
2. 內(nèi)容內(nèi)在邏輯本單元親子之間的交往既承接了上一課的“師生之間”的交往,也為七年級(jí) 下冊(cè)關(guān)于中學(xué)生提升在集體中的交往水平和能力奠定了堅(jiān)實(shí)的基礎(chǔ),因此本單元 在教材中起承上啟下的作用。第一框“家的意味”,通過(guò)對(duì)“家規(guī)” “家訓(xùn)”的探究,引出中國(guó)家庭文化中“孝”的精神內(nèi)涵,引導(dǎo)學(xué)生對(duì)家庭美德進(jìn)行深入思考,學(xué)會(huì)孝親敬長(zhǎng)。第二框“愛在家人間”,通過(guò)體驗(yàn)家人間的親情之愛,進(jìn)而引導(dǎo)學(xué)生感受對(duì) 家人割舍不斷的情感。第三框“讓家更美好”,通過(guò)對(duì)傳統(tǒng)家庭與現(xiàn)代家庭的比較,引導(dǎo)學(xué)生認(rèn)識(shí) 現(xiàn)代家庭的特點(diǎn),樹立共創(chuàng)共享家庭美德的意識(shí),共創(chuàng)和諧美德之家。從初識(shí)家中“孝”,體驗(yàn)家中“愛”,處理家中“沖突”,到自覺共建家庭 “美德”,學(xué)生逐步體味親情之愛,將“親情之愛”內(nèi)化于心、夕卜化于行。(三)學(xué)情分析(1) 認(rèn)知水平與心理特點(diǎn)七年級(jí)學(xué)生正處于青春期,是生理和心理急劇變化的關(guān)鍵時(shí)期,自我意識(shí)不 斷增強(qiáng),逆反心理更加強(qiáng)烈,情緒波動(dòng)較大。

二、學(xué)習(xí)新知1.正方形的定義在這一環(huán)節(jié)中,學(xué)生很容易犯的一個(gè)錯(cuò)誤就是條件重復(fù)。這時(shí)我會(huì)引導(dǎo)學(xué)生從畫圖入手,提示他們:你能不能減少條件畫出正方形呢?這一環(huán)節(jié)中我的觀點(diǎn)是正方形的定義不是唯一的。我們可以從不同的角度來(lái)總結(jié),只要合理就加以肯定。比如當(dāng)學(xué)生總結(jié)出:四個(gè)角都是直角,四條邊都相等的四邊形是正方形。這時(shí)可以提醒學(xué)生是不是一定要四條邊都相等,減少邊的條數(shù)可以畫出來(lái)嗎?角的個(gè)數(shù)可以減少嗎?鼓勵(lì)學(xué)生動(dòng)手試一試。通過(guò)動(dòng)手畫圖可以很容易的得到正方形的一個(gè)定義:三個(gè)角都是直角,一組鄰邊都相等的四邊形是正方形。通過(guò)小組討論的形式來(lái)完成這一環(huán)節(jié)的設(shè)置。鼓勵(lì)學(xué)生利用現(xiàn)有的材料繼續(xù)構(gòu)造正方形。從另一個(gè)角度總結(jié)正方形的定義。

探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.

(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):

【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):

【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

二、說(shuō)學(xué)情分析:在學(xué)生學(xué)習(xí)了位置與方向、面積等有關(guān)知識(shí)的基礎(chǔ)上,教材安排了“設(shè)計(jì)校園”的實(shí)踐活動(dòng)。通過(guò)設(shè)計(jì)學(xué)生熟悉的環(huán)境──“校園”的過(guò)程,進(jìn)一步鞏固學(xué)生已經(jīng)學(xué)習(xí)的有關(guān)知識(shí),讓學(xué)生學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際生活中的問(wèn)題,培養(yǎng)收集、整理、分析信息的意識(shí)和能力,以及愛學(xué)校的良好情感。教材以重新設(shè)計(jì)校園為主題,從收集信息、分析信息、設(shè)計(jì)方案三個(gè)方面安排了整個(gè)實(shí)踐活動(dòng)。三、說(shuō)學(xué)習(xí)目標(biāo)和重難點(diǎn):1、通過(guò)學(xué)生自主調(diào)查、討論交流尋找出解決問(wèn)題的方法,最后設(shè)計(jì)出自己喜歡的校園。2、讓學(xué)生更加理解東、西、南、北、東南、西南、東北、西北八個(gè)方位,進(jìn)一步鞏固學(xué)生已經(jīng)學(xué)習(xí)的有關(guān)知識(shí)。3、讓學(xué)生學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際生活中的問(wèn)題,培養(yǎng)收集、整理、分析信息的意識(shí)和能力,逐步提高解決問(wèn)題的能力,以及熱愛學(xué)校的良好情感。

通過(guò)活動(dòng)讓學(xué)生思考:回答問(wèn)題。對(duì)學(xué)生的不同回答,只要合理,就給以認(rèn)可。設(shè)計(jì)意圖:讓學(xué)生學(xué)會(huì)有條理的表述自己的思考過(guò)程,理解三種數(shù)據(jù)都是刻畫了一組數(shù)據(jù)的平均水平。整個(gè)授課的過(guò)程中,由于問(wèn)題的難點(diǎn)進(jìn)行了分解突破,問(wèn)題的解決水到渠成。同時(shí)要學(xué)生意識(shí)到:學(xué)會(huì)用數(shù)據(jù)說(shuō)話,科學(xué)地分析身邊的事例。5.歸納小結(jié),鞏固提高。(1)列表對(duì)比平均數(shù)眾數(shù)中位數(shù)概念注意點(diǎn)(2)在生活中可用平均數(shù)、眾數(shù)和中位數(shù)這三個(gè)特征數(shù)來(lái)描述一組數(shù)據(jù)的集中趨勢(shì),它們各有不同的側(cè)重點(diǎn),需聯(lián)系實(shí)際進(jìn)行選擇,對(duì)于同一份材料,同一組數(shù)據(jù),不同的目的,應(yīng)選擇不同的數(shù)據(jù)代表。因從不同的角度進(jìn)行分析時(shí),看到的結(jié)果可能是截然不同的。作為信息的接受者,分析數(shù)據(jù)應(yīng)該從多角度對(duì)統(tǒng)計(jì)數(shù)據(jù)作出較全面的分析,從而避免機(jī)械的,片面的解釋。

[互動(dòng)2]師:請(qǐng)大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個(gè)函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設(shè)函數(shù)表達(dá)式;第三步:根據(jù)表達(dá)式列等式,若是正比例函數(shù),只要找圖象上一個(gè)點(diǎn)的坐標(biāo)就可以了;若是一次函數(shù),則需要找到圖象上兩個(gè)點(diǎn)的坐標(biāo),然后把點(diǎn)的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于R、b的一個(gè)或兩個(gè)方程。第四步:求出R、b的值第五步:把R、b的值代回到表達(dá)式中就可以了。師:分析得太好了。那么,大家說(shuō)一說(shuō),確定正比例函數(shù)的表達(dá)式需要幾個(gè)條件?確定一次函數(shù)的表達(dá)式呢?要說(shuō)明理由。生:確定正比例函數(shù)需要一個(gè)條件,而確定一次函數(shù)需要兩個(gè)條件。原因是正比例函數(shù)的表達(dá)式:y=Rx(R≠0)中,只有一個(gè)系數(shù)R,而一次函數(shù)的表達(dá)式y(tǒng)=Rx+b(R≠0)中,有兩個(gè)系數(shù)(待定)R和b。

③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡(jiǎn)單的一次函數(shù)表達(dá)式是本節(jié)課的重點(diǎn)加難點(diǎn),所以在解決這一問(wèn)題時(shí)及時(shí)引導(dǎo)學(xué)生總結(jié)學(xué)習(xí)體會(huì),教給學(xué)生掌握“從特殊到一般”的認(rèn)識(shí)規(guī)律中發(fā)現(xiàn)問(wèn)題的方法。類比出一次函數(shù)關(guān)系式的一般式的求法,以此突破教學(xué)難點(diǎn)。在學(xué)習(xí)過(guò)程中,我巡視并予以個(gè)別指導(dǎo),關(guān)注學(xué)生的個(gè)體發(fā)展。經(jīng)學(xué)生分析:(1)當(dāng)月收入大于1600元而小于2100元時(shí),y=0.05×(x-1600);(2)當(dāng)x=1760時(shí),y=0.05×(1760-1600)=8(元);(3)設(shè)此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學(xué)效果課前:通過(guò)本節(jié)課的學(xué)習(xí),教學(xué)目標(biāo)應(yīng)該可以基本達(dá)成,學(xué)生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,并能正確識(shí)別一次函數(shù)解析式,能根據(jù)所給條件寫出簡(jiǎn)單的一次函數(shù)表達(dá)式,且通過(guò)本節(jié)課的學(xué)習(xí)學(xué)生的抽象思維能力,數(shù)學(xué)應(yīng)用能力都能有所提升,

引導(dǎo)學(xué)生回憶所學(xué)知識(shí)。通過(guò)這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識(shí)的習(xí)慣;有助于學(xué)生在剛剛理解了新知識(shí)的基礎(chǔ)上,及時(shí)把知識(shí)系統(tǒng)化、條理化。(四)作業(yè)布置加強(qiáng)“教、學(xué)”反思,進(jìn)一步提高“教與學(xué)”效果。四、說(shuō)板書設(shè)計(jì)采用了如下板書,要點(diǎn)突出,簡(jiǎn)明清晰。一次函數(shù)正比例函數(shù)圖像的畫法:確定兩點(diǎn)為(0,0)和(1,K)一次函數(shù)選擇的兩點(diǎn)為:(0,k)和(-b\k,0)五、說(shuō)課后小結(jié)實(shí)踐證明,在教學(xué)中,充分利用教學(xué)方法的優(yōu)勢(shì),為學(xué)生創(chuàng)造一個(gè)好的學(xué)習(xí)氛圍,來(lái)引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題從而解決問(wèn)題。多媒體課件支撐著整個(gè)教學(xué)過(guò)程,令學(xué)生在一個(gè)生動(dòng)有趣的課堂上,能愉快地接受知識(shí)

讓學(xué)生先獨(dú)立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對(duì)平方根概念的鞏固與拓展,在例2中由于學(xué)生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號(hào)上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負(fù)或0來(lái)確定其平方根,這部分內(nèi)容可用板演或展臺(tái)展示結(jié)果的方式進(jìn)行,讓學(xué)生獨(dú)立完成,應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià).3、最后,我又設(shè)計(jì)了一道辨析題:在做一道求4的平方根的題目時(shí),小明說(shuō):“4的平方根是2”,小紅說(shuō):“4的平方根是-2”,小強(qiáng)說(shuō):“2是4的平方根”小芳說(shuō):“-2是4的平方根”,請(qǐng)問(wèn)他們的說(shuō)法正確嗎?通過(guò)這道題目,使學(xué)生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時(shí)對(duì)以往五種運(yùn)算中從未出現(xiàn)過(guò)的一題兩解的現(xiàn)象作出了解釋,使學(xué)生明白了一種整體與局部的關(guān)系,再一次突出了重點(diǎn).

三、說(shuō)教法和學(xué)法:1、說(shuō)教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過(guò)程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過(guò)程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單的應(yīng)用,2、說(shuō)學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過(guò)程中給學(xué)生足夠的時(shí)間認(rèn)真、仔細(xì)地動(dòng)手書寫證明過(guò)程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時(shí),培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說(shuō)教學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程的設(shè)計(jì)有:1、問(wèn)題引入新課:七年級(jí)已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過(guò)的知識(shí)引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動(dòng)中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說(shuō)理”證明作好準(zhǔn)備,使學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于實(shí)踐,同時(shí)對(duì)新知識(shí)的學(xué)習(xí)有了期待。

【設(shè)計(jì)意圖】:這一環(huán)節(jié)的設(shè)計(jì)主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認(rèn)識(shí)概念。通過(guò)材料的閱讀,活動(dòng)的實(shí)踐,讓學(xué)生在自畫、自糾中,加深對(duì)概念的理解,培養(yǎng)學(xué)生良好的畫圖習(xí)慣。(三)例題講解學(xué)生活動(dòng)4:(由于例題都比較簡(jiǎn)單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫出圖中A、B、C、D、E各點(diǎn)的坐標(biāo)。例2、在直角坐標(biāo)系中,描出下列各點(diǎn):A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O(shè)計(jì)意圖】:例1的目的是給出點(diǎn)的位置,寫出點(diǎn)的坐標(biāo)。例2的目的是給出點(diǎn)的坐標(biāo),描出點(diǎn)。學(xué)完概念之后,馬上對(duì)概念進(jìn)行應(yīng)用,達(dá)到鞏固的目的。當(dāng)時(shí)上課時(shí)這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。

接下來(lái)請(qǐng)同學(xué)們改造這五個(gè)句子,變成“如果??,那么??”句式,其實(shí)就是一個(gè)語(yǔ)文環(huán)節(jié)中的造句,同學(xué)們很活躍,紛紛舉手發(fā)言。課堂檢測(cè)練習(xí)我用到的是課本221頁(yè)習(xí)題6.2第1、2題,有個(gè)別同學(xué)會(huì)做錯(cuò),做錯(cuò)點(diǎn)在于對(duì)判斷還把握不夠到位,還有少數(shù)同學(xué)對(duì)定義與命題的理解產(chǎn)生混亂。據(jù)此,我提出:定義與命題兩個(gè)概念該如何區(qū)別?同學(xué)們舉手發(fā)言:定義是一個(gè)描述性的概念,而命題是判斷一件事情的句子。還有同學(xué)說(shuō)道:定義就是一個(gè)“??叫??”的句式,命題就是“如果??那么??”的句式。在教學(xué)中,學(xué)生對(duì)定義與命題的把握還是比較清楚的。大部分學(xué)生可以口頭完成導(dǎo)學(xué)案設(shè)計(jì)的題目。能夠迅速的把一個(gè)命題轉(zhuǎn)化成“如果?那么?”的形式.利用疑問(wèn)句和祈使句的特點(diǎn),判定不是命題的語(yǔ)句.迅速的掌握情況還是比較可以的。

有意義,字母x的取值必須滿足什么條件?設(shè)計(jì)意圖:通過(guò)例題的講解,使學(xué)生加深對(duì)所學(xué)知識(shí)的理解,避免一些常見錯(cuò)誤。而變式練習(xí)設(shè)計(jì),延續(xù)的例題的風(fēng)格,一步一步,步步深入,本節(jié)課的教學(xué)難點(diǎn)就在學(xué)生的操作活動(dòng)中迎刃而解了。對(duì)提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí),激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運(yùn)用,提高認(rèn)識(shí)1、通過(guò)基礎(chǔ)訓(xùn)練讓學(xué)生體驗(yàn)學(xué)習(xí)的成就感。2、應(yīng)用拓展:增加難處,再次讓學(xué)生聯(lián)系以前的知識(shí),增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。(六)、總結(jié)評(píng)價(jià),質(zhì)疑問(wèn)難這節(jié)課我們學(xué)習(xí)了什么?設(shè)計(jì)意圖:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,學(xué)生在暢所欲言中對(duì)二次根式的認(rèn)知得到進(jìn)一步的鞏固升華。五、板書設(shè)計(jì).采用綱領(lǐng)式的板書,使學(xué)生有“話”可說(shuō),有“理”可循,在簡(jiǎn)單板書設(shè)計(jì)中使學(xué)生體會(huì)到數(shù)學(xué)的簡(jiǎn)潔美。

我們遇到的往往就是這樣的方程組,我們要想比較簡(jiǎn)捷地把它解出來(lái),就需要轉(zhuǎn)化為同一個(gè)未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請(qǐng)大家把解答過(guò)程寫出來(lái).解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個(gè)方程組的解法,請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請(qǐng)學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個(gè)方程中同一個(gè)未知數(shù)系數(shù)的絕對(duì)值的最小公倍數(shù),然分別在兩個(gè)方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個(gè)一元一次方程.③解一元一次方程.

學(xué)生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算.意圖:通過(guò)學(xué)生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問(wèn)題轉(zhuǎn)化為平面最短距離問(wèn)題并利用勾股定理求解.在活動(dòng)中體驗(yàn)數(shù)學(xué)建摸,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點(diǎn)、突破難點(diǎn)的策略在教學(xué)過(guò)程中教師應(yīng)通過(guò)情景創(chuàng)設(shè),激發(fā)興趣,鼓勵(lì)引導(dǎo)學(xué)生經(jīng)歷探索過(guò)程,得出結(jié)論,從而發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力,提高學(xué)生解決實(shí)際問(wèn)題的能力.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。