
方法總結(jié):當(dāng)某一事件A發(fā)生的可能性大小與相關(guān)圖形的面積大小有關(guān)時(shí),概率的計(jì)算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關(guān)鍵是要找準(zhǔn)兩點(diǎn):(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點(diǎn)二:與面積有關(guān)的概率的應(yīng)用如圖,把一個(gè)圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個(gè)扇形區(qū)域,自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為_(kāi)_______.解析:∵一個(gè)圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個(gè)扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設(shè)計(jì)1.與面積有關(guān)的等可能事件的概率P(A)= 2.與面積有關(guān)的概率的應(yīng)用本課時(shí)所學(xué)習(xí)的內(nèi)容多與實(shí)際相結(jié)合,因此教學(xué)過(guò)程中要引導(dǎo)學(xué)生展開(kāi)豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問(wèn)題,并進(jìn)行合理的整合歸納,選擇適宜的數(shù)學(xué)方法來(lái)解決問(wèn)題

方法總結(jié):絕對(duì)值小于1的數(shù)也可以用科學(xué)記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)前面的0的個(gè)數(shù)所決定.【類型二】 將用科學(xué)記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點(diǎn)向左移動(dòng)相應(yīng)的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學(xué)記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a(bǔ)的小數(shù)點(diǎn)向左移動(dòng)n位所得到的數(shù).三、板書設(shè)計(jì)用科學(xué)記數(shù)法表示絕對(duì)值小于1的數(shù):一般地,一個(gè)小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負(fù)整數(shù).從本節(jié)課的教學(xué)過(guò)程來(lái)看,結(jié)合了多種教學(xué)方法,既有教師主導(dǎo)課堂的例題講解,又有學(xué)生主導(dǎo)課堂的自主探究.課堂上學(xué)習(xí)氣氛活躍,學(xué)生的學(xué)習(xí)積極性被充分調(diào)動(dòng),在拓展學(xué)生學(xué)習(xí)空間的同時(shí),又有效地保證了課堂學(xué)習(xí)質(zhì)量

問(wèn)題:2015年9月24日,美國(guó)國(guó)家航空航天局(下簡(jiǎn)稱:NASA)對(duì)外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時(shí)間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽(yáng)系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開(kāi)普勒186,距離地球492光年.1光年是光經(jīng)過(guò)一年所行的距離,光的速度大約是3×105km/s.問(wèn):這顆行星距離地球多遠(yuǎn)(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問(wèn)題:“10×105×107×102”等于多少呢?二、合作探究探究點(diǎn):同底數(shù)冪的乘法【類型一】 底數(shù)為單項(xiàng)式的同底數(shù)冪的乘法計(jì)算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(3)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可.

【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對(duì)值的混合運(yùn)算計(jì)算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計(jì)1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個(gè)不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個(gè)數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計(jì)算具體問(wèn)題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時(shí)要多舉幾個(gè)例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗(yàn)自主探究的樂(lè)趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)

解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類問(wèn)題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).三、板書設(shè)計(jì)1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問(wèn)題的過(guò)程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問(wèn)題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過(guò)觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力

解:(1)電動(dòng)車的月產(chǎn)量y為隨著時(shí)間x的變化而變化,有一個(gè)時(shí)間x就有唯一一個(gè)y與之對(duì)應(yīng),月產(chǎn)量y是時(shí)間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實(shí)現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢(shì),實(shí)質(zhì)是觀察自變量增大時(shí),因變量是隨之增大還是減?。?、板書設(shè)計(jì)1.常量與變量:在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來(lái)描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個(gè)重要的量,對(duì)于我們所熟悉的變化,在用了這兩個(gè)量的描述之后更加鮮明.本節(jié)是學(xué)好本章的基礎(chǔ),教學(xué)中立足于學(xué)生的認(rèn)知基礎(chǔ),激發(fā)學(xué)生的認(rèn)知沖突,提升學(xué)生的認(rèn)知水平,使學(xué)生在原有的知識(shí)基礎(chǔ)上迅速遷移到新知上來(lái)

方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問(wèn)題,其頂角平分線、底邊上的高、底邊上的中線是常見(jiàn)的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.三、板書設(shè)計(jì)1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過(guò)一段對(duì)話設(shè)置疑問(wèn),巧設(shè)懸念,激發(fā)起學(xué)生獲取知識(shí)的求知欲,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動(dòng)接受知識(shí)轉(zhuǎn)為主動(dòng)學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過(guò)程中充分發(fā)揮學(xué)生的主動(dòng)性,讓學(xué)生提出猜想.在教學(xué)中,教師通過(guò)必要的提示指明學(xué)生思考問(wèn)題的方向,在學(xué)生提出驗(yàn)證三角形內(nèi)角和的不同方法時(shí),教師注意讓學(xué)生上臺(tái)演示自己的操作過(guò)程和說(shuō)明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論

解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過(guò)本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練

方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢(shì)寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計(jì)1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對(duì)應(yīng)值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡(jiǎn)單明了,便于計(jì)算分析,能方便求出自變量為任意一個(gè)值時(shí),相對(duì)應(yīng)的因變量的值,但是需計(jì)算.本節(jié)課的教學(xué)內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學(xué)生才接觸到,學(xué)生感覺(jué)有點(diǎn)難.這節(jié)課的重點(diǎn)是讓學(xué)生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點(diǎn)是理解這兩種表示方法的優(yōu)缺點(diǎn).就此問(wèn)題,通過(guò)讓學(xué)生對(duì)幾個(gè)例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點(diǎn)來(lái)解決,這樣學(xué)生就能很好地區(qū)分這兩種表示方法,并能對(duì)不同的問(wèn)題選擇恰當(dāng)?shù)姆椒?/p>

通過(guò)活動(dòng)讓學(xué)生思考:回答問(wèn)題。對(duì)學(xué)生的不同回答,只要合理,就給以認(rèn)可。設(shè)計(jì)意圖:讓學(xué)生學(xué)會(huì)有條理的表述自己的思考過(guò)程,理解三種數(shù)據(jù)都是刻畫了一組數(shù)據(jù)的平均水平。整個(gè)授課的過(guò)程中,由于問(wèn)題的難點(diǎn)進(jìn)行了分解突破,問(wèn)題的解決水到渠成。同時(shí)要學(xué)生意識(shí)到:學(xué)會(huì)用數(shù)據(jù)說(shuō)話,科學(xué)地分析身邊的事例。5.歸納小結(jié),鞏固提高。(1)列表對(duì)比平均數(shù)眾數(shù)中位數(shù)概念注意點(diǎn)(2)在生活中可用平均數(shù)、眾數(shù)和中位數(shù)這三個(gè)特征數(shù)來(lái)描述一組數(shù)據(jù)的集中趨勢(shì),它們各有不同的側(cè)重點(diǎn),需聯(lián)系實(shí)際進(jìn)行選擇,對(duì)于同一份材料,同一組數(shù)據(jù),不同的目的,應(yīng)選擇不同的數(shù)據(jù)代表。因從不同的角度進(jìn)行分析時(shí),看到的結(jié)果可能是截然不同的。作為信息的接受者,分析數(shù)據(jù)應(yīng)該從多角度對(duì)統(tǒng)計(jì)數(shù)據(jù)作出較全面的分析,從而避免機(jī)械的,片面的解釋。

學(xué)生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算.意圖:通過(guò)學(xué)生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問(wèn)題轉(zhuǎn)化為平面最短距離問(wèn)題并利用勾股定理求解.在活動(dòng)中體驗(yàn)數(shù)學(xué)建摸,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點(diǎn)、突破難點(diǎn)的策略在教學(xué)過(guò)程中教師應(yīng)通過(guò)情景創(chuàng)設(shè),激發(fā)興趣,鼓勵(lì)引導(dǎo)學(xué)生經(jīng)歷探索過(guò)程,得出結(jié)論,從而發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力,提高學(xué)生解決實(shí)際問(wèn)題的能力.

讓學(xué)生先獨(dú)立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對(duì)平方根概念的鞏固與拓展,在例2中由于學(xué)生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號(hào)上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負(fù)或0來(lái)確定其平方根,這部分內(nèi)容可用板演或展臺(tái)展示結(jié)果的方式進(jìn)行,讓學(xué)生獨(dú)立完成,應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià).3、最后,我又設(shè)計(jì)了一道辨析題:在做一道求4的平方根的題目時(shí),小明說(shuō):“4的平方根是2”,小紅說(shuō):“4的平方根是-2”,小強(qiáng)說(shuō):“2是4的平方根”小芳說(shuō):“-2是4的平方根”,請(qǐng)問(wèn)他們的說(shuō)法正確嗎?通過(guò)這道題目,使學(xué)生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時(shí)對(duì)以往五種運(yùn)算中從未出現(xiàn)過(guò)的一題兩解的現(xiàn)象作出了解釋,使學(xué)生明白了一種整體與局部的關(guān)系,再一次突出了重點(diǎn).

三、說(shuō)教法和學(xué)法:1、說(shuō)教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過(guò)程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過(guò)程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單的應(yīng)用,2、說(shuō)學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過(guò)程中給學(xué)生足夠的時(shí)間認(rèn)真、仔細(xì)地動(dòng)手書寫證明過(guò)程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時(shí),培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說(shuō)教學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程的設(shè)計(jì)有:1、問(wèn)題引入新課:七年級(jí)已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過(guò)的知識(shí)引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動(dòng)中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說(shuō)理”證明作好準(zhǔn)備,使學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于實(shí)踐,同時(shí)對(duì)新知識(shí)的學(xué)習(xí)有了期待。

【設(shè)計(jì)意圖】:這一環(huán)節(jié)的設(shè)計(jì)主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認(rèn)識(shí)概念。通過(guò)材料的閱讀,活動(dòng)的實(shí)踐,讓學(xué)生在自畫、自糾中,加深對(duì)概念的理解,培養(yǎng)學(xué)生良好的畫圖習(xí)慣。(三)例題講解學(xué)生活動(dòng)4:(由于例題都比較簡(jiǎn)單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫出圖中A、B、C、D、E各點(diǎn)的坐標(biāo)。例2、在直角坐標(biāo)系中,描出下列各點(diǎn):A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O(shè)計(jì)意圖】:例1的目的是給出點(diǎn)的位置,寫出點(diǎn)的坐標(biāo)。例2的目的是給出點(diǎn)的坐標(biāo),描出點(diǎn)。學(xué)完概念之后,馬上對(duì)概念進(jìn)行應(yīng)用,達(dá)到鞏固的目的。當(dāng)時(shí)上課時(shí)這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。

接下來(lái)請(qǐng)同學(xué)們改造這五個(gè)句子,變成“如果??,那么??”句式,其實(shí)就是一個(gè)語(yǔ)文環(huán)節(jié)中的造句,同學(xué)們很活躍,紛紛舉手發(fā)言。課堂檢測(cè)練習(xí)我用到的是課本221頁(yè)習(xí)題6.2第1、2題,有個(gè)別同學(xué)會(huì)做錯(cuò),做錯(cuò)點(diǎn)在于對(duì)判斷還把握不夠到位,還有少數(shù)同學(xué)對(duì)定義與命題的理解產(chǎn)生混亂。據(jù)此,我提出:定義與命題兩個(gè)概念該如何區(qū)別?同學(xué)們舉手發(fā)言:定義是一個(gè)描述性的概念,而命題是判斷一件事情的句子。還有同學(xué)說(shuō)道:定義就是一個(gè)“??叫??”的句式,命題就是“如果??那么??”的句式。在教學(xué)中,學(xué)生對(duì)定義與命題的把握還是比較清楚的。大部分學(xué)生可以口頭完成導(dǎo)學(xué)案設(shè)計(jì)的題目。能夠迅速的把一個(gè)命題轉(zhuǎn)化成“如果?那么?”的形式.利用疑問(wèn)句和祈使句的特點(diǎn),判定不是命題的語(yǔ)句.迅速的掌握情況還是比較可以的。

探究活動(dòng)二的安排,是要讓學(xué)生明確只靠實(shí)驗(yàn)得出的結(jié)論,可能會(huì)以點(diǎn)帶面,從而進(jìn)一步說(shuō)明學(xué)習(xí)推理的必要性。并小結(jié)出:如果要判斷一個(gè)結(jié)論不正確只要舉一個(gè)反例就可以了。探究活動(dòng)三的安排是說(shuō)明只靠實(shí)驗(yàn)得出的結(jié)論也不可靠,必須經(jīng)過(guò)有根有據(jù)的推理才行?;顒?dòng)交流:(1)在數(shù)學(xué)學(xué)習(xí)中,你用到過(guò)推理嗎?(2)在日常生活中,你用到過(guò)推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學(xué)生學(xué)會(huì)簡(jiǎn)單的推理方法,同時(shí)增強(qiáng)學(xué)生的學(xué)習(xí)興趣。課堂練習(xí):①游戲:蘋果在哪里?②判斷:是誰(shuí)打破玻璃?把練習(xí)變成游戲的形式,也是為了增加課堂的趣味性,提高學(xué)生的學(xué)習(xí)興趣。課堂小結(jié):進(jìn)一步明確學(xué)習(xí)推理的必要性。課后作業(yè):①課本習(xí)題6.1:2,3。②預(yù)習(xí)下一節(jié):定義與命題

我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。