提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版小學數(shù)學二年級上冊《買文具》說課稿

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據:2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據tan x= ,可以求出tan x的值,然后根據例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數(shù)學下冊商品利潤最大問題2教案

    北師大初中九年級數(shù)學下冊商品利潤最大問題2教案

    (8)物價部門規(guī)定,此新型通訊產品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    ③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數(shù)關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?

  • 北師大初中九年級數(shù)學下冊商品利潤最大問題1教案

    北師大初中九年級數(shù)學下冊商品利潤最大問題1教案

    (2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結合二次函數(shù)與一次函數(shù)的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關鍵.

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們容易看出這段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中九年級數(shù)學下冊切線的判定及三角形的內切圓教案

    北師大初中九年級數(shù)學下冊切線的判定及三角形的內切圓教案

    解析:(1)連接BI,根據I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.

  • 北師大初中九年級數(shù)學下冊解直角三角形2教案

    北師大初中九年級數(shù)學下冊解直角三角形2教案

    首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

  • 北師大初中九年級數(shù)學下冊直線和圓的位置關系及切線的性質教案

    北師大初中九年級數(shù)學下冊直線和圓的位置關系及切線的性質教案

    解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

  • 北師大初中九年級數(shù)學下冊解直角三角形1教案

    北師大初中九年級數(shù)學下冊解直角三角形1教案

    方法總結:解答此類題目的關鍵是根據題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據勾股定理求出BD、AD的長,再根據解直角三角形求出CD的長,最后根據三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結:解答此類題目的關鍵是根據題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.

  • 北師大初中九年級數(shù)學下冊圓內接正多邊形教案

    北師大初中九年級數(shù)學下冊圓內接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    解析:點E是BC︵的中點,根據圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

  • 人教版新課標小學數(shù)學四年級上冊大數(shù)的認識教案

    人教版新課標小學數(shù)學四年級上冊大數(shù)的認識教案

    教學建議:億以內數(shù)的讀法是在萬以內數(shù)的認識基礎上進行教學的,主要是讓學生用已有的知識去類推,所以在教學本課時我們有必要對萬以內數(shù)的認識進行有針對性的復習。如可采用口答形式復習數(shù)位順序及各數(shù)位之間的十進關系。對于萬以內數(shù)的讀法,可以出示一組數(shù)據如:2005年路橋區(qū)前兩個月共實現(xiàn)農林、漁業(yè)總產值17013萬元,其中農業(yè)產品6383萬元,林業(yè)產值94萬元,漁業(yè)產值7560萬元。在對萬以內數(shù)復習的基礎上我們再出示第2頁主題圖,讓學生讀一讀畫面上呈現(xiàn)的6個大數(shù),也可以讓學生說說身邊聽到,看到的大數(shù)。在這環(huán)節(jié)中我們就讓學生憑著自己的理解運用舊知識去讀數(shù)。這里學生肯定會造成認知上的沖突,從而引入新課教學。新課時可以按以下環(huán)節(jié)進行:1、計數(shù)器操作,認識計數(shù)單位用計數(shù)器數(shù)數(shù),撥上一萬,然后一萬一萬地數(shù),一直數(shù)到九萬后,再加一萬是多少?認識十個一萬是十萬,用同樣的方法,完成一百萬,一千萬,一億的認識。

  • 北師大版小學數(shù)學一年級下冊《看一看(二)》說課稿

    北師大版小學數(shù)學一年級下冊《看一看(二)》說課稿

    這樣的設計是因為低年級的學生比較喜歡聽故事,充分調到他們的積極性,使之不感覺乏味。最后是回顧小結,總結收獲。首先讓學生說說本節(jié)課有哪些地方需要提醒同學們注意。。然后,教師進行恰當評價。此環(huán)節(jié)通過師生互動、生生互動,經歷一次再學習、再鞏固的過程。這節(jié)課中,我有淺入深,讓學生體會到數(shù)學與現(xiàn)實生活的密切聯(lián)系,讓學生能夠實實在在的從課堂學習中獲取新知,建立數(shù)學模型,培養(yǎng)能力,發(fā)展思維,從而喜歡數(shù)學課,熱愛數(shù)學學科。整堂課教學設計結構嚴謹、條理清楚、層層深入。既重視了知識本身的建構,又重視了課堂結構的建構,充分體現(xiàn)了學生從“問題情境—建立數(shù)學模型—解釋、應用與拓展”的意義建構的學習過程。學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節(jié)數(shù)學課都能達到理想的教學效果。

  • 北師大版小學數(shù)學三年級下冊《分一分(二)》說課稿

    北師大版小學數(shù)學三年級下冊《分一分(二)》說課稿

    本環(huán)節(jié)我依據教學目標和學生對知識的掌握情況,我設計了有針對性、層次分明的練習題(基本題、變式題、拓展題),讓學生在解決這些問題的過程中,進一步理解,鞏固新知,訓練思維的靈活性,使學生的探索精神和實踐能力得到進一步的提高。[本環(huán)節(jié)的設計意圖:通過多層次的練習,激發(fā)學生的學習興趣,調動學生學習的積極性和主動性,使學生獲得愉悅的情感體驗。同時使學生的知識結構更加完善。]第四環(huán)節(jié):課堂小結在輕松愉快的學習活動結束后,我會與學生進行總結對話“這節(jié)課你有什么收獲?你學會了什么?還有什么不懂得地方嗎?”學生充分發(fā)言,交流自己的學習心得。[本環(huán)節(jié)的設計意圖:幫助學生梳理知識,整理本課的知識要點,完成本節(jié)課的教學活動。]

  • 人教版新課標小學數(shù)學五年級下冊分數(shù)與小數(shù)的互化說課稿2篇

    人教版新課標小學數(shù)學五年級下冊分數(shù)與小數(shù)的互化說課稿2篇

    三、總結規(guī)律、形成概念通過學生積極討論,充分調動了學生的積極參與學習,既發(fā)揮了學生學習的主動性,又培養(yǎng)了學生的發(fā)散性思維,引導學生總結出:有的分數(shù)可以化成有限小數(shù),有的分數(shù)不可以化成有限小數(shù),請同學們再看一看什么樣的分數(shù)可以化成有限小數(shù)?什么樣的分數(shù)不可以化成有限小數(shù)?啟發(fā)學生從分母的最小公倍數(shù)著手。 最后總結出:一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分數(shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分數(shù),說說你是怎樣把小數(shù)化成分數(shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學生為主,教師點撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點作分子。2、小數(shù)化成分數(shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分數(shù)的題目,課前了解到學生在小學時已學過把小數(shù)如何化成分數(shù)的方法,因而以學生練習為主,加以操練并鞏固,有錯誤的及時糾正。

  • 人教版新課標小學數(shù)學五年級下冊最小公倍數(shù)說課稿2篇

    人教版新課標小學數(shù)學五年級下冊最小公倍數(shù)說課稿2篇

    3、歸納求最小公倍數(shù)的方法。師:想一想找“共同的休息日”和“總人數(shù)”的過程,說一說可以怎樣求兩個數(shù)的最小公倍數(shù)?(①找倍數(shù):從小到大依次找出各個數(shù)的倍數(shù);②找公有:把各個數(shù)的倍數(shù)進行對照找出公有的倍數(shù);③找最?。簭墓械谋稊?shù)中找出最小的一個。)4、看書88——89頁,你還有什么問題?師:觀察一下,為什么6和8這兩個數(shù)不相同,卻可以寫出相同的公倍數(shù)呢?公倍數(shù)與原有的這兩個數(shù)有什么關系?公倍數(shù)與它們的最小公倍數(shù)又有什么關系?教師畫出數(shù)軸表示6和8的倍數(shù),并可生動地比喻6寶寶步子小,要走3次才能到達24的位置。而8寶寶步子大,只要走兩次就到達24的位置。到達24的位置后,6寶寶和8寶寶就碰面了。可見公倍數(shù)24是6和8的不同倍數(shù)。三、解決問題,深化理解(練習是理解知識,掌握知識,形成技能的基本途徑,又是運用知識,發(fā)展智能,完善認知結構的重要手段。

  • 人教版新課標小學數(shù)學五年級下冊總復習教案

    人教版新課標小學數(shù)學五年級下冊總復習教案

    此圖是一個復式折線統(tǒng)計圖,考察內容是根據統(tǒng)計圖,進行數(shù)據的有效分析。(1)因為統(tǒng)計圖中藍色的折線表示學齡兒童,根據對學齡兒童的折線數(shù)據分析發(fā)現(xiàn):1980年的學齡兒童最多,2000年的學齡兒童最少。(2)根據題目要求的分析:沒上學的學齡兒童實際上是指:學齡兒童的人數(shù)與實際入學兒童人數(shù)的差。通過仔細觀察統(tǒng)計圖,可以直觀地發(fā)現(xiàn):1980年的學齡兒童和入學人數(shù)之間的差值最大,2000年的學齡兒童和入學人數(shù)之間的差值最小。所以,1980年沒上學的學齡兒童最多,2000年的最少。(3)這一問比較開放,只要合理即可。三、練習二十七第9——14題解答指導:9. 81cm3=81ml 700dm3=0.7m3 560ml=0.56L 2.3dm3=2300cm310. 根據圖示可知:把鐵皮做成一個長方體,長方體的長為30—5×2=20(cm),寬為25—5×2=15(cm),高也就是切去的正方形的邊長5cm。(1)求“這個盒子用了多少鐵皮?”也就是求這個鐵皮盒子(無蓋)的表面積。

上一頁123...383940414243444546474849下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。