
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過(guò)一段對(duì)話設(shè)置疑問(wèn),巧設(shè)懸念,激發(fā)起學(xué)生獲取知識(shí)的求知欲,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動(dòng)接受知識(shí)轉(zhuǎn)為主動(dòng)學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過(guò)程中充分發(fā)揮學(xué)生的主動(dòng)性,讓學(xué)生提出猜想.在教學(xué)中,教師通過(guò)必要的提示指明學(xué)生思考問(wèn)題的方向,在學(xué)生提出驗(yàn)證三角形內(nèi)角和的不同方法時(shí),教師注意讓學(xué)生上臺(tái)演示自己的操作過(guò)程和說(shuō)明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論

探究點(diǎn)三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過(guò)一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點(diǎn)在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過(guò)一、三象限,可知-k>0即kx3>x2得y10時(shí),y隨x的增大而增大;k<0時(shí),y隨x的增大而減小.三、板書(shū)設(shè)計(jì)1.函數(shù)與圖象之間是一一對(duì)應(yīng)的關(guān)系;2.作一個(gè)函數(shù)的圖象的一般步驟:列表,描點(diǎn),連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線.經(jīng)歷函數(shù)圖象的作圖過(guò)程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對(duì)應(yīng)關(guān)系.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書(shū)設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.

故線段d的長(zhǎng)度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長(zhǎng)度的方法:根據(jù)線段的關(guān)系寫(xiě)出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長(zhǎng).已知三條線段長(zhǎng)分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長(zhǎng)與前面三條線段的長(zhǎng)能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒(méi)有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長(zhǎng)可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長(zhǎng)有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.

●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問(wèn)題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問(wèn)題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過(guò)溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過(guò)比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書(shū)設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).

解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常常考慮此定理.三、板書(shū)設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

(1) 有人叫我大胖豬,我不想和他玩了。(2) 我們一起警察抓小偷的游戲,總讓我當(dāng)小偷,他當(dāng)警察, 我心里很不開(kāi)心。(3) 每次玩跳繩都是他們幾個(gè)人玩大繩,不給我們玩。(4) 體育課上,我們玩兩人三足的游戲,總是女生贏,我們男生總是輸。結(jié)果好多男生都不玩了,大家還吵起來(lái),游戲也進(jìn)行不下去了。2. 老師在課下也抓拍到了一些同學(xué)發(fā)生了一些不愉快,我們一起 去看一看,他們?yōu)槭裁赐娌幌氯チ??播放不守?guī)則的視頻。小組討論,說(shuō)出自己的想法和做法。小結(jié):看了大家的表演,大家做的都很不錯(cuò),都學(xué)會(huì)了如何交朋友。發(fā)生了矛盾也沒(méi)什么,我們應(yīng)該多溝通,相互謙讓,包容, 遵守游戲規(guī)則,大家在一起還是好朋友。同學(xué)們看,我們的歡樂(lè)號(hào)已經(jīng)準(zhǔn)備就緒,我們一起手拉手揚(yáng)帆起航吧!構(gòu)建和諧文明校園從我做起?!驹O(shè)計(jì)意圖:通過(guò)交流討論鼓勵(lì)學(xué)生擴(kuò)大交往范圍,給主動(dòng)交往的,謙讓、寬容、 鼓勵(lì)言行給予肯定,樹(shù)立樂(lè)群的信心?!?/p>

本環(huán)節(jié)主要是對(duì)前面三個(gè)活動(dòng)的綜合。我會(huì)以談話的方式和學(xué)生交流:各位小導(dǎo)游,你們知道的真多,聽(tīng)了小導(dǎo)游的介紹我也想到你們的家鄉(xiāng)參觀了。那么,我們?cè)鯓幽茏尭嗟耐獾匦∨笥蚜私馕覀兊募亦l(xiāng)呢?愛(ài)家鄉(xiāng)的小導(dǎo)游們,讓我們更好地宣傳家鄉(xiāng)吧,下課后請(qǐng)?jiān)谀愕募亦l(xiāng)美景宣傳卡上寫(xiě)下你對(duì)家鄉(xiāng)的贊美,夸夸我們美麗的家鄉(xiāng)!【設(shè)計(jì)意圖】“夸家鄉(xiāng)”是對(duì)本課所學(xué)的升華,提升學(xué)生對(duì)家鄉(xiāng)的熱愛(ài)之情,也是根據(jù)品德與生活課程開(kāi)放性與語(yǔ)文二年級(jí)下冊(cè)口語(yǔ)交際寫(xiě)話《夸家鄉(xiāng)》的整合,對(duì)學(xué)生語(yǔ)文學(xué)習(xí)也有所幫助。七、板書(shū)設(shè)計(jì)好的板書(shū)就像一份微型教案,對(duì)于低年級(jí)學(xué)生而言,避免空洞、枯燥的概念,條條框框的限制,用生動(dòng)的形象來(lái)吸引學(xué)生是很有必要的。此板書(shū)力圖前面而簡(jiǎn)明的將授課內(nèi)容傳遞給學(xué)生,清晰直觀,便于學(xué)生理解和理清本課脈絡(luò)。以上是我從教材、學(xué)情、教學(xué)目標(biāo)、教學(xué)方法、教學(xué)準(zhǔn)備、教學(xué)過(guò)程、板書(shū)設(shè)計(jì)七個(gè)方面對(duì)本課進(jìn)行的說(shuō)明。

三是:裝修不應(yīng)該打擾鄰居的正常休息。如果你是事件中的受害方,你會(huì)如何處理這件事情?全班匯報(bào)交流,教師相機(jī)引導(dǎo),板書(shū):權(quán)利不是絕對(duì)的,是有界限的。設(shè)計(jì)意圖:引導(dǎo)學(xué)生體會(huì)權(quán)利行使的界限。環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機(jī)引導(dǎo)。設(shè)計(jì)意圖:梳理總結(jié),體驗(yàn)收獲與成功的喜悅,內(nèi)化提升學(xué)生的認(rèn)識(shí)與情感。環(huán)節(jié)四:布置作業(yè),課外延伸課后,以古老而優(yōu)美的漢字為主題辦一期手抄報(bào)。設(shè)計(jì)意圖:將課堂所學(xué)延伸到學(xué)生的日常生活中,有利于落實(shí)行為實(shí)踐。六、板書(shū)設(shè)計(jì)為了突出重點(diǎn),讓學(xué)生整體上感知本節(jié)課的主要內(nèi)容,我將以思維導(dǎo)圖的形式設(shè)計(jì)板書(shū):在黑板中上方的中間位置是課題《公民的基本權(quán)利》,下面是:憲法是公民權(quán)利的保障書(shū);法律保障公民基本權(quán)利的落實(shí);權(quán)利不是絕對(duì)的,是有界限的。

一、說(shuō)教材(一)教材分析本課是最新部編版《道德與法治》六年級(jí)下冊(cè)第四單元第10課。教育學(xué)生要熱愛(ài)和平與世界各國(guó)人民友好相處,和平是各國(guó)人民的共同愿望,也是當(dāng)今世界兩大主題之一,在飽受戰(zhàn)爭(zhēng)創(chuàng)傷之后,世界各國(guó)人民越來(lái)越認(rèn)識(shí)到創(chuàng)造一個(gè)和平的環(huán)境,對(duì)人類社會(huì)的進(jìn)步和發(fā)展有重要意義,并為之進(jìn)行了不懈的努力,近年來(lái)各國(guó)也開(kāi)始重視對(duì)下一代進(jìn)行熱愛(ài)和平的教育。(二)教學(xué)目標(biāo)1.懂得不同民族國(guó)家和地區(qū)之間相互尊重,和睦相處的重要意義,培養(yǎng)世界和平與發(fā)展的理念。2.初步了解影響世界歷史發(fā)展的一些重要?dú)v史事件,知道戰(zhàn)爭(zhēng)帶來(lái)的傷害,明白和平是世界潮流;知道中國(guó)為推動(dòng)和平做出巨大的貢獻(xiàn)。3.初步掌握收集、整理和運(yùn)用信息的能力。(三)教學(xué)重難點(diǎn)教學(xué)重點(diǎn):知道戰(zhàn)爭(zhēng)帶來(lái)的傷害,明白和平是世界潮流;知道中國(guó)為推動(dòng)和平做出巨大的貢獻(xiàn)。教學(xué)難點(diǎn):和平是世界潮流。

【設(shè)計(jì)意圖】這個(gè)環(huán)節(jié)的設(shè)計(jì)是在學(xué)生掌握了學(xué)法的基礎(chǔ)上,放手讓學(xué)生自主學(xué)習(xí),從而真正做到“將課堂還給學(xué)生”。這樣的設(shè)計(jì)不僅充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且更能促使學(xué)生真正掌握初步分析人物形象的方法。四、聯(lián)系實(shí)際,拓展延伸1.作者臧克家筆下的聞一多先生是一位潛心于學(xué)術(shù)研究,“做了再說(shuō),做了不說(shuō)”的學(xué)者;也是一位英勇無(wú)畏,“說(shuō)了就做,言論與行動(dòng)完全一致”的革命家。中國(guó)自古以來(lái)就重視言行一致,并把它當(dāng)成做人的準(zhǔn)則之一。請(qǐng)收集關(guān)于言和行的成語(yǔ)或名言,選取一句作為你的座右銘,并說(shuō)明理由。2.課外閱讀聞一多的《太陽(yáng)吟》《死水》《靜夜》等詩(shī)作,欣賞其藝術(shù)特色,感受其中的精神追求。

請(qǐng)同學(xué)們閱讀教材P133虛線框內(nèi)的內(nèi)容,根據(jù)要求選擇某一新聞事件,開(kāi)展時(shí)事討論,積極發(fā)表看法。提示:學(xué)生圍繞事件展開(kāi)討論,積極發(fā)言,認(rèn)真聽(tīng)取同學(xué)的意見(jiàn),討論時(shí)注意遵守之前制定的“班級(jí)議事規(guī)則”。(全班討論,師總結(jié))【設(shè)計(jì)意圖】此環(huán)節(jié)通過(guò)開(kāi)展班級(jí)討論活動(dòng),制定貼近學(xué)生生活的“班級(jí)議事規(guī)則”,將學(xué)習(xí)的與“和”相關(guān)的知識(shí)引入實(shí)踐生活,培養(yǎng)學(xué)生運(yùn)用知識(shí)指導(dǎo)生活實(shí)踐的綜合能力。五、以“和”為文,總結(jié)收獲師:同學(xué)們,通過(guò)本次綜合性學(xué)習(xí)活動(dòng),我們知道了“以和為貴”不僅是為人處世的準(zhǔn)繩,也是從政治國(guó)的法寶,是處理國(guó)際關(guān)系的原則,是創(chuàng)建和諧社會(huì)的前提條件。通過(guò)這次活動(dòng),你對(duì)中國(guó)文化中的“和”一定也有了許多的認(rèn)識(shí)和理解吧!任選一個(gè)角度,寫(xiě)一篇不少于600字的作文,談?wù)勀愕氖斋@。

活動(dòng)內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒(méi)有其他的證明方法呢?這個(gè)題還可以用“內(nèi)錯(cuò)角相等,兩直線平行”來(lái)證.

通過(guò)以上工作的開(kāi)展,我辦軟件正版化工作的推進(jìn)取得了明顯的成效,干部職工提高了對(duì)使用正版軟件重要性的認(rèn)識(shí),增強(qiáng)了保護(hù)知識(shí)產(chǎn)權(quán)的化意識(shí),確保了軟件正版化管理制度的落實(shí)。二、2023年工作計(jì)劃今后,我辦將進(jìn)一步做好軟件正版化工作。一是堅(jiān)決使用正版操作系統(tǒng)和辦公軟件,全力推動(dòng)機(jī)關(guān)單位正版軟件使用工作。二是加大軟件正版化的宣傳教育力度,提高機(jī)關(guān)工作人員對(duì)軟件正版化工作的認(rèn)識(shí),促使工作人員自覺(jué)使用正版軟件。三是建立軟件正版化長(zhǎng)效工作機(jī)制。我辦將進(jìn)一步完善正版軟件采購(gòu)工作機(jī)制,健全軟件資產(chǎn)管理制度,建立正版軟件安裝使用臺(tái)賬,實(shí)現(xiàn)對(duì)正版軟件采購(gòu)、配置、升級(jí)、使用、處置等工作的動(dòng)態(tài)監(jiān)控管理。繼續(xù)做好資金保障工作,嚴(yán)格按照軟件正版化工作要求和實(shí)際使用需求,在年度經(jīng)費(fèi)預(yù)算和信息化項(xiàng)目建設(shè)經(jīng)費(fèi)中安排必要的軟件采購(gòu)資金。

尊敬的老師們,親愛(ài)的同學(xué)們:大家早上好!今天國(guó)旗下講話的題目是《勵(lì)志和勤奮是成才的必由之路》。勵(lì)志,首先要有志向,有高尚遠(yuǎn)大的理想,和明確的奮斗目標(biāo)。少年周恩來(lái)在全班同學(xué)面前表明了自己的心跡;要為中華崛起而讀書(shū),他不愿意自己的民族再軟弱,不愿意自己的同胞再受欺辱,他把個(gè)人的學(xué)習(xí)與民族的振興大業(yè)相聯(lián)系,最終成了新中國(guó)的第一任總理!可見(jiàn),高尚遠(yuǎn)大的理想和明確的奮斗目標(biāo)對(duì)人的領(lǐng)導(dǎo)作用多么巨大!其次,勵(lì)志一定要有實(shí)踐,要為實(shí)現(xiàn)志向而進(jìn)行不懈的努力!西漢時(shí)期,有個(gè)孩子叫匡衡,自幼勤奮好學(xué)。可是家境貧寒,晚上想讀書(shū)而無(wú)燈照明。鄰居家倒是每到夜晚,總是燭燈火通明,可惜這光照不到匡衡的屋里。怎么辦呢?匡衡便把自己家靠里鄰居家的那堵墻壁鑿開(kāi),他就湊著透進(jìn)來(lái)的燈光,讀起書(shū)來(lái)。就這樣,匡衡終于成了一名大學(xué)問(wèn)家。

1、互逆命題:在兩個(gè)命題中,如果第一個(gè)命題的條件是第二個(gè)命題的 ,而第一個(gè)命題的結(jié)論是第二個(gè)命題的 ,那么這兩個(gè)命題互逆命題,如果把其中一個(gè)命題叫做原命題,那么另一個(gè)命題叫做它的 .2、互逆定理:如果一個(gè)定理的逆命題也是 ,那么這個(gè)逆命題就是原來(lái)定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).

一、我市“廁所革命”和糞污治理基本情況20**年以來(lái),扎蘭屯市為農(nóng)戶改造廁所13851戶,全部為三格式化糞池水沖衛(wèi)生廁所,涉及12個(gè)鄉(xiāng)鎮(zhèn)1個(gè)辦事處。車輛分配時(shí),根據(jù)已改廁所和20**年擬任務(wù)數(shù),結(jié)合市機(jī)關(guān)服務(wù)中心、農(nóng)科局實(shí)地調(diào)研后,擬急需采購(gòu)30臺(tái)。二、實(shí)地調(diào)研考察基本情況廁改大多采用了“三格式”化糞池廁所的方式,這種廁所有結(jié)構(gòu)簡(jiǎn)單易施工、成本較低、無(wú)害化效果好等優(yōu)點(diǎn)。由政府免費(fèi)提供“三格式”化糞池,村內(nèi)需自配小型抽糞設(shè)施,抽取已無(wú)害化處理過(guò)的糞液,作為有機(jī)肥料還田利用?!叭袷健被S池廁所與傳統(tǒng)旱廁相比有無(wú)異味、少蚊蠅、使用方便、無(wú)污染等諸多優(yōu)點(diǎn),適合在廣大鄉(xiāng)村大力推廣。

知識(shí)和技能 1、指導(dǎo)學(xué)生繪制氣壓帶和風(fēng)帶分布示意圖,從中分析大氣運(yùn)動(dòng)的規(guī)律性,并培養(yǎng)和提高學(xué)生繪制原理形成示意圖的地理技能。2、運(yùn)用海陸熱力差異原理進(jìn)行解釋,加強(qiáng)學(xué) 生對(duì)半球冬夏季氣壓中心的形成和分布的理解解。3、使學(xué)生理解氣壓帶和風(fēng)帶對(duì)氣候的影響。過(guò)程與方法 1、通過(guò)三圈環(huán)流模擬演示,培養(yǎng)學(xué)生的空間思維能力。2、通過(guò)對(duì)海陸分布對(duì)大氣環(huán)流影響的兩圖示的對(duì)比分析,讓學(xué)生讀圖思考?xì)鈮簬?、風(fēng)帶的分布規(guī)律和原因。3、利用成因分析法引導(dǎo)學(xué)生探究氣壓帶和風(fēng)帶對(duì)氣候的影響機(jī)制。情感、態(tài)度與價(jià)值觀1、培養(yǎng)學(xué)生辯證唯物主義觀。2、培養(yǎng)學(xué)生理論聯(lián)系實(shí)際的能力。教學(xué)重點(diǎn)1、氣壓帶和風(fēng)帶的分布。2、北半球氣壓中心冬夏分布及對(duì)氣候的影響。3、氣壓帶和風(fēng)帶對(duì)氣候的影響。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。