
1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線(xiàn)性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線(xiàn)性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線(xiàn)性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線(xiàn)性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀(guān)測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線(xiàn)性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀(guān)測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線(xiàn)性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線(xiàn)性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線(xiàn)性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

還有其他解法嗎?從中讓學(xué)生體會(huì)解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問(wèn)題:我們觀(guān)察上面方程的變形過(guò)程,從中觀(guān)察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過(guò)程,讓學(xué)生觀(guān)察在變形過(guò)程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).師提出問(wèn)題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).

1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).(三)理解性質(zhì),應(yīng)用鞏固師提出問(wèn)題:我們可以回過(guò)頭來(lái),想一想剛解過(guò)的方程哪個(gè)變化過(guò)程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說(shuō)出哪一過(guò)程是移項(xiàng).對(duì)比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問(wèn)題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡(jiǎn)、檢驗(yàn).)

②.通過(guò)“由文字語(yǔ)言到符號(hào)語(yǔ)言”再“由符號(hào)語(yǔ)言到文字語(yǔ)言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點(diǎn)策略:①.分三步分散難點(diǎn):引入時(shí)大量的實(shí)際情景,讓學(xué)生體會(huì)到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡(jiǎn)單代數(shù)式賦予實(shí)際意義,進(jìn)一步體會(huì)代數(shù)式的模型思想;通過(guò)“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實(shí)際問(wèn)題的能力.②.適時(shí)安排小組合作與交流,使學(xué)生在傾聽(tīng)、質(zhì)疑、說(shuō)服、推廣的過(guò)程中得到“同化”和“順應(yīng)”,直至豁然開(kāi)朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計(jì)為學(xué)生精彩的生成提供了很好的平臺(tái),在實(shí)際教學(xué)過(guò)程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點(diǎn),及時(shí)進(jìn)行引導(dǎo)和激勵(lì),并根據(jù)具體教學(xué)對(duì)象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過(guò)程真正成為生成教育智慧和增強(qiáng)實(shí)踐能力的過(guò)程.讓預(yù)設(shè)與生成齊飛.

方法總結(jié):(1)若被開(kāi)方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開(kāi)方數(shù)(式)中不含能開(kāi)得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開(kāi)方數(shù)是否還有分母,是否還有能開(kāi)得盡方的因數(shù)或因式.三、板書(shū)設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過(guò)程,運(yùn)用類(lèi)比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問(wèn)題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.

屬于此類(lèi)問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類(lèi),需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。

探究點(diǎn)二:列分式方程某工廠(chǎng)生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問(wèn)題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書(shū)設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過(guò)參與學(xué)習(xí)的過(guò)程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺(jué)性,體驗(yàn)類(lèi)比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.

安裝及運(yùn)輸費(fèi)用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購(gòu)買(mǎi)甲種設(shè)備2臺(tái),乙種設(shè)備10臺(tái);②購(gòu)買(mǎi)甲種設(shè)備3臺(tái),乙種設(shè)備9臺(tái);③購(gòu)買(mǎi)甲種設(shè)備4臺(tái),乙種設(shè)備8臺(tái).方法總結(jié):列不等式組解應(yīng)用題時(shí),一般只設(shè)一個(gè)未知數(shù),找出兩個(gè)或兩個(gè)以上的不等關(guān)系,相應(yīng)地列出兩個(gè)或兩個(gè)以上的不等式組成不等式組求解.在實(shí)際問(wèn)題中,大部分情況下應(yīng)求整數(shù)解.三、板書(shū)設(shè)計(jì)1.一元一次不等式組的解法2.一元一次不等式組的實(shí)際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個(gè)不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時(shí)要讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,感受運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的過(guò)程,提高實(shí)際操作能力.

(3)分別在射線(xiàn)OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖2.問(wèn):此題目還可以 如何畫(huà)出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過(guò)點(diǎn)O分別作射線(xiàn)OA, OB, OC,OD;(3)分別在射線(xiàn)OA, OB, OC, OD的反向延長(zhǎng)線(xiàn)上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫(huà)的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過(guò)點(diǎn)O分別作 射線(xiàn)OA,OB,OC,OD;(3)分別在射線(xiàn)OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫(huà)法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線(xiàn)上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫(huà)位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫(huà)位似圖形的關(guān)鍵是畫(huà)出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫(huà)圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫(huà)圖時(shí)位似中心的取法有多種,對(duì)畫(huà)圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫(huà)圖最簡(jiǎn)便.三、板書(shū)設(shè)計(jì)

(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿(mǎn)足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)

首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類(lèi)型一】 求弧長(zhǎng)如圖,某廠(chǎng)生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()

解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線(xiàn),根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

解析:(1)由切線(xiàn)的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線(xiàn)的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線(xiàn),∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線(xiàn)的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線(xiàn)連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

中心城區(qū)面積從不足x平方公里,到如今突破xx.x平方公里;交通建設(shè)從沒(méi)有一米高等級(jí)公路,到如今構(gòu)建起“鐵公機(jī)”立體網(wǎng)絡(luò);農(nóng)民人均純收入從不足xxx元,到xxxx年底農(nóng)村居民人均可支配收入飆升至xxxxx元翻開(kāi)xx建地xx年的壯美畫(huà)卷,滄桑巨變的背后離不開(kāi)人才的付出、離不開(kāi)人才的奉獻(xiàn)。xx年篳路藍(lán)縷的奮斗史,就是一部集聚人才、依靠人才、成就人才的發(fā)展史?!@是人才總量大幅躍增的xx年。從xxxx年每萬(wàn)人擁有人才不足xx人,到xxxx年每萬(wàn)人擁有人才xxx人,再到xxxx年每萬(wàn)人擁有人才xxxx人,增長(zhǎng)近xx倍?!@是人才質(zhì)量飛速提升的xx年。截至xxxx年底,全市大學(xué)以上學(xué)歷人才占比由不足x%提高至xx%、增長(zhǎng)xx余倍,一大批優(yōu)秀人才獲國(guó)家級(jí)榮譽(yù)表彰?!@是人才生態(tài)顯著改善的xx年。從人才專(zhuān)項(xiàng)經(jīng)費(fèi)幾乎為零,到人才工作投入近億元;從人才缺乏基本住居保障,到拎包入住式人才公寓突破xxxx套;從沒(méi)有專(zhuān)門(mén)的人才服務(wù)機(jī)構(gòu),到市縣(區(qū))全覆蓋成立人才服務(wù)中心近悅遠(yuǎn)來(lái)的人才生態(tài)不斷優(yōu)化。

二、2024年工作打算(一)推動(dòng)完善公司治理和內(nèi)控體系建設(shè)結(jié)合國(guó)企改革三年行動(dòng)成果,加快推進(jìn)公司標(biāo)準(zhǔn)化、合規(guī)化和現(xiàn)代化建設(shè)體系,確保各項(xiàng)改革舉措落地落實(shí)。(二)推動(dòng)業(yè)務(wù)拓展力度持續(xù)推進(jìn)X信公司與省農(nóng)擔(dān)的戰(zhàn)略合作,進(jìn)一步完善業(yè)務(wù)流程和工作指引,深入鄉(xiāng)鎮(zhèn)抓好業(yè)務(wù)推介,加大擔(dān)保產(chǎn)品開(kāi)發(fā),拓寬金融機(jī)構(gòu)合作范圍。(三)推動(dòng)非融資擔(dān)保業(yè)務(wù)開(kāi)展積極協(xié)調(diào)相關(guān)部門(mén)配合開(kāi)展應(yīng)付款項(xiàng)、訴訟保全、工程履約及民工工資履約等擔(dān)保業(yè)務(wù),構(gòu)建“政、銀、企、擔(dān)”全鏈條融資擔(dān)保模式,加快拓展公司非融資擔(dān)保業(yè)務(wù)。(四)推動(dòng)應(yīng)急轉(zhuǎn)貸業(yè)務(wù)開(kāi)展積極推進(jìn)建立應(yīng)急轉(zhuǎn)貸業(yè)務(wù)資金池,完善應(yīng)急轉(zhuǎn)貸資金的管理使用辦法,切實(shí)解決縣域中小微企業(yè)和“三農(nóng)主體”“轉(zhuǎn)貸難”、“轉(zhuǎn)貸貴”的問(wèn)題。(五)推動(dòng)化解公司面臨困境積極爭(zhēng)取縣委、縣政府及縣級(jí)部門(mén)的支持,研究并制定切實(shí)可行的方案,全面解決X森公司遺留問(wèn)題,做強(qiáng)做大X森公司,重啟與縣內(nèi)各大金融機(jī)構(gòu)的合作,充分發(fā)揮融擔(dān)功能更好服務(wù)于縣域經(jīng)濟(jì)。

(二)推進(jìn)鑄牢中華民族共同體意識(shí)理論研究體系建設(shè)一是以鑄牢中華民族共同體意識(shí)為主線(xiàn),進(jìn)一步加強(qiáng)*博物館——*市鑄牢中華民族共同體意識(shí)教育實(shí)踐基地的建設(shè),將文物背后的民族融合發(fā)展歷程與傳承弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化有機(jī)結(jié)合,將*博物館打造成為集鑄牢中華民族共同體意識(shí)宣傳教育、青少年研學(xué)交流、旅游打卡的陣地。*年,計(jì)劃建設(shè)一家*縣鑄牢中華民族共同體意識(shí)教育館。二是與*職業(yè)學(xué)院積極配合,進(jìn)一步加強(qiáng)鑄牢中華民族共同體意識(shí)研究基地*工作站建設(shè)。聚焦鑄牢中華民族共同體意識(shí)的理論與實(shí)踐研究,挖掘和整理*地區(qū)各民族交往交流交融歷史,努力形成一批理論和實(shí)踐成果,為我縣深化民族團(tuán)結(jié)進(jìn)步教育、中華民族共同體建設(shè)提供智力支持。(三)深入落實(shí)、實(shí)施“三項(xiàng)計(jì)劃”一是落實(shí)各族青少年交流計(jì)劃方面。協(xié)調(diào)教育、團(tuán)縣委等部門(mén),擬定*年青少年交流計(jì)劃。持續(xù)組織開(kāi)展各類(lèi)各族青少年主題交流活動(dòng)、社會(huì)實(shí)踐交流活動(dòng),各族青少年志愿服務(wù)交流活動(dòng),積極開(kāi)展結(jié)對(duì)幫扶交流活動(dòng)。

二、下半年工作打算國(guó)際國(guó)內(nèi)形勢(shì)復(fù)雜多變,上半年工信工作雖然取得了一定的成效,但還面臨著要素資源約束愈發(fā)趨緊,綜合評(píng)價(jià)結(jié)果運(yùn)用范圍有待拓寬,企業(yè)轉(zhuǎn)型升級(jí)動(dòng)力還需增強(qiáng)等問(wèn)題。下半年,我們將繼續(xù)全面貫徹落實(shí)市委、市政府各項(xiàng)決策部署,錨定目標(biāo)任務(wù),全力攻堅(jiān)工業(yè)經(jīng)濟(jì)品質(zhì),力爭(zhēng)在省制造業(yè)高質(zhì)量發(fā)展示范區(qū)建設(shè)工作中取得新成效。(一)全面深化D建引領(lǐng)進(jìn)一步優(yōu)化組織設(shè)置。分鏈分層優(yōu)化D的組織設(shè)置,完善產(chǎn)業(yè)鏈D組織架構(gòu)圖譜,暢通行業(yè)、條線(xiàn)、板塊、部門(mén)聯(lián)系,實(shí)現(xiàn)市、鎮(zhèn)(區(qū))聯(lián)動(dòng)和支撐單位協(xié)同配合的組織體系,不斷提升組織覆蓋和工作覆蓋質(zhì)量。進(jìn)一步加強(qiáng)理論學(xué)習(xí)。緊密結(jié)合工信工作實(shí)際,扎實(shí)開(kāi)展新一輪主題教育。通過(guò)工信講壇、金點(diǎn)子、各類(lèi)沙龍活動(dòng),形成學(xué)思踐悟的濃厚氛圍,推動(dòng)理論學(xué)習(xí)走深向?qū)崱_M(jìn)一步打造D建陣地。落實(shí)基本制度,強(qiáng)化基本保障,建強(qiáng)基本隊(duì)伍。高標(biāo)準(zhǔn)打造鏈上企業(yè)D建陣地,選派D建指導(dǎo)員到骨干企業(yè)開(kāi)展指導(dǎo)工作,推動(dòng)D建“齒輪”轉(zhuǎn)起來(lái)、工作動(dòng)起來(lái),管理嚴(yán)起來(lái)、效果實(shí)起來(lái)。
PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。