
解:設(shè)每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關(guān)鍵是熟練掌握列方程解應(yīng)用題的一般步驟:①根據(jù)題意找出等量關(guān)系;②列出方程;③解方程;④作答.三、板書設(shè)計(jì)本節(jié)課的教學(xué)先讓學(xué)生回顧上一節(jié)所學(xué)的知識(shí),復(fù)習(xí)鞏固方程的解法,讓學(xué)生進(jìn)一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎(chǔ)上發(fā)展而成的.然后通過一個(gè)實(shí)際問題,列出一個(gè)有括號(hào)的方程,大膽放手讓學(xué)生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學(xué)生在化歸思想影響下想到要去括號(hào).

由于題目較簡單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1.會(huì)借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關(guān)系.同向追及問題:①同時(shí)不同地——甲路程+路程差=乙路程; 甲時(shí)間=乙時(shí)間.②同地不同時(shí)——甲時(shí)間+時(shí)間差=乙時(shí)間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時(shí)間=乙時(shí)間.目的:強(qiáng)調(diào)本課的重點(diǎn)內(nèi)容是要學(xué)會(huì)借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對(duì)所學(xué)知識(shí)和思想方法進(jìn)行歸納和總結(jié),從而形成自己對(duì)數(shù)學(xué)知識(shí)的理解和解決問題的方法策略.

1.舉例說明什么時(shí)候用普查的方式獲得數(shù)據(jù)較好,什么時(shí)候用抽樣調(diào)查的方式獲得數(shù)據(jù)較好?2、下列調(diào)查中分別采用了那些調(diào)查方式?⑴為了了解你們班同學(xué)的身高,對(duì)全班同學(xué)進(jìn)行調(diào)查.⑵為了了解你們學(xué)校學(xué)生對(duì)新教材的喜好情況,對(duì)所有學(xué)號(hào)是5的倍數(shù)的同學(xué)進(jìn)行調(diào)查。3、說明在以下問題中,總體、個(gè)體、樣本各指什么?⑴為了考察一個(gè)學(xué)校的學(xué)生參加課外體育活動(dòng)的情況,調(diào)查了其中20名學(xué)生每天參加課外體育活動(dòng)的時(shí)間.⑵為了了解一批電池的壽命,從中抽取10只進(jìn)行實(shí)驗(yàn)。⑶為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里對(duì)進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計(jì)。通過本節(jié)課的學(xué)習(xí),同學(xué)們有什么收獲和疑問?1、基本概念:⑴.調(diào)查、普查、抽樣調(diào)查.⑵.總體、個(gè)體、樣本.2、何時(shí)采用普查、何時(shí)采用抽樣調(diào)查,各有什么優(yōu)缺點(diǎn)?

[例3]、用一個(gè)平面去截一個(gè)幾何體,截面形狀有圓、三角形,那么這個(gè)幾何體可能是_________。四、鞏固強(qiáng)化:1、一個(gè)正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個(gè)平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個(gè)平面去截幾何體,若截面是三角形,這個(gè)幾何體可能是__________________________________________________.4*、用一個(gè)平面截一個(gè)幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個(gè)平面截一個(gè)正方體的一個(gè)角,剩下的幾何體有幾個(gè)頂點(diǎn)、幾條棱、幾個(gè)面?6*、幾何體中的圓臺(tái)、棱錐都是課外介紹的,所以我們就在這個(gè)欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺(tái)用平面截圓臺(tái),截面形狀會(huì)有_____和_______這兩種較特殊圖形,截法如下:

學(xué)習(xí)目標(biāo):1、知識(shí)與技能(1)會(huì)用字母、運(yùn)算符號(hào)表示簡單問題的規(guī)律,并能驗(yàn)證所探索的規(guī)律。(2)能綜合所學(xué)知識(shí)解決實(shí)際問題和數(shù)學(xué)問題,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),培養(yǎng)學(xué)生的實(shí)踐能力和創(chuàng)新意識(shí)。2、過程與方法(1)經(jīng)歷探索數(shù)量關(guān)系,運(yùn)用符號(hào)表示規(guī)律,通過驗(yàn)算驗(yàn)證規(guī)律的過程。(2)在解決問題的過程中體驗(yàn)歸納、分析、猜想、抽象還有類比、轉(zhuǎn)化等思維方法,發(fā)展學(xué)生抽象思維能力,培養(yǎng)學(xué)生良好的思維品質(zhì)。3、情感、態(tài)度與價(jià)值觀通過對(duì)實(shí)際問題中規(guī)律的探索,體驗(yàn)“從特殊到一般、再到特殊”的辯證思想,激發(fā)學(xué)生的探究熱情和對(duì)數(shù)學(xué)的學(xué)習(xí)熱情。學(xué)習(xí)重點(diǎn):探索實(shí)際問題中蘊(yùn)涵的關(guān)系和規(guī)律。學(xué)習(xí)難點(diǎn):用字母、運(yùn)算符號(hào)表示一般規(guī)律。學(xué)習(xí)過程:一、創(chuàng)景引入活動(dòng):出示一張?jiān)職v,學(xué)生任意選出3×3方格框出的9個(gè)數(shù),并計(jì)算出這9個(gè)數(shù)的和,告訴老師,老師就可以說出你所選的是哪9個(gè)數(shù)。

兩道例題,第一道題師生共同分析,第二道題學(xué)生自己分析。部分學(xué)生在運(yùn)用方程解答問題時(shí),等量關(guān)系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過程中教師給予適當(dāng)?shù)闹笇?dǎo)。四、課堂小結(jié)這節(jié)課我們學(xué)習(xí)了有關(guān)打折銷售的知識(shí),其實(shí)類似的問題我們小學(xué)也遇到過,今天在分析實(shí)際問題時(shí)又用到了列表法,通過這節(jié)課的學(xué)習(xí),談?wù)勀阍谥R(shí)方面的收獲。提示學(xué)生通過對(duì)《日歷中的方程》《我變高了》以及本節(jié)《打折銷售》學(xué)習(xí)還有以往經(jīng)驗(yàn),讓學(xué)生分組討論,用一元一次方程解決實(shí)際問題的一般步驟是什么?目的:讓學(xué)生進(jìn)一步體會(huì)方程的作用,這里教師又提到學(xué)生的小學(xué)學(xué)習(xí),目的是想提示學(xué)生,將今天的方程解法與小學(xué)學(xué)過的算術(shù)方法相對(duì)比。此活動(dòng)的目的是使學(xué)生不再處于被動(dòng)狀態(tài),而成為積極的發(fā)現(xiàn)者。

1、突出問題的應(yīng)用意識(shí).教師首先用一個(gè)學(xué)生感興趣的實(shí)際問題引人課題,然后運(yùn)用算術(shù)的方法給出解答。在各環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)的問題,使學(xué)生能圍繞問題展開思考、討論,進(jìn)行學(xué)習(xí).2、體現(xiàn)學(xué)生的主體意識(shí).本設(shè)計(jì)中,教師始終把學(xué)生放在主體的地位:讓學(xué)生通過對(duì)列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作與交流,得出問題的不同解答方法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納.3、體現(xiàn)學(xué)生思維的層次性.教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決間題,然后再逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程.在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學(xué)生思維的層次性.4、滲透建模的思想.把實(shí)際間題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問題抽象出方程模型的能力.

【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長,根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個(gè)頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個(gè)頂點(diǎn)),再分別以這條邊的兩個(gè)端點(diǎn)為圓心,以已知線段長為半徑畫弧,兩弧的交點(diǎn)即為另一個(gè)頂點(diǎn).三、板書設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角.作圖時(shí),鼓勵(lì)學(xué)生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學(xué)生的動(dòng)手能力、語言表達(dá)能力

2、測(cè)量。各個(gè)組的成員根據(jù)上面的設(shè)計(jì)方案在小組長的帶領(lǐng)下到操場測(cè)量相關(guān)數(shù)據(jù)。比一比,哪組最先測(cè)量完并回到教室?(二)根據(jù)測(cè)量結(jié)果計(jì)算相關(guān)物體高度。時(shí)間為2分鐘。要求:獨(dú)立計(jì)算,并填寫好實(shí)驗(yàn)報(bào)告上。(三)展示測(cè)量結(jié)果。時(shí)間為3分鐘。各組都將自己計(jì)算的結(jié)果報(bào)告,看哪些同學(xué)計(jì)算準(zhǔn)確些?(四)整理實(shí)驗(yàn)報(bào)告,上交作為作業(yè)。此活動(dòng)主要是讓學(xué)生通過動(dòng)手實(shí)踐,分工合作,近一步理解三角函數(shù)知識(shí),以及從中體會(huì)學(xué)習(xí)數(shù)學(xué)的重要性,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和激情,增強(qiáng)團(tuán)隊(duì)意識(shí)。四、小結(jié):本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識(shí)上:2、 思想方法上:五、板書設(shè)計(jì)1、目標(biāo)展示在小黑板上2、自主學(xué)習(xí)的問題展示在小黑板上3、學(xué)生設(shè)計(jì)的方案示意圖在小組展示板上展示

此題的設(shè)計(jì)目的:及時(shí)的練習(xí)一是起到鞏固新知識(shí)的目的,二是及時(shí)了解學(xué)生掌握新知識(shí)的情況,起到反饋的目的。這樣設(shè)計(jì)的依據(jù)是:小題多,是讓更多的學(xué)生參與到學(xué)習(xí)中來,及時(shí)給予他們更正,更多的是對(duì)他們的鼓勵(lì)和表揚(yáng),有簡單的題盡量讓基礎(chǔ)不太好的的學(xué)生去說,以讓他們感受到成功的樂趣;并且《新課標(biāo)》中指出課程內(nèi)容應(yīng)處于學(xué)生“最近發(fā)展區(qū)”的范圍以內(nèi),讓成功始終伴隨學(xué)生學(xué)習(xí)的旅程,以保證學(xué)生不會(huì)因過多的失敗而放棄他們的努力,失去發(fā)展的機(jī)會(huì)。第四環(huán)節(jié):師生合作,歸納總結(jié)。先由學(xué)生個(gè)人總結(jié),然后教師補(bǔ)充。設(shè)計(jì)目的:通過學(xué)生個(gè)人小結(jié),教師可以了解學(xué)生掌握知識(shí)的情況,培養(yǎng)學(xué)生總結(jié)概括的能力,教師補(bǔ)充起到完善所學(xué)知識(shí)的目的。第五環(huán)節(jié):布置作業(yè),鞏固提高。設(shè)計(jì)目的:因材施“作業(yè)”,分層次布置作業(yè),減輕學(xué)生的負(fù)擔(dān),全面推行素質(zhì)教育,讓學(xué)生學(xué)有用的數(shù)學(xué),不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)中得到不同的發(fā)展,以求彰顯學(xué)生的個(gè)性。

在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時(shí),四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個(gè)角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計(jì)矩形的判定對(duì)角線相等的平行四邊形是矩形三個(gè)角是直角的四邊形是矩形有一個(gè)角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過程,并會(huì)運(yùn)用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動(dòng)手實(shí)踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.

(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個(gè)四邊形是菱形時(shí),要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個(gè)四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計(jì)菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對(duì)角線互相垂直的平行四邊形是菱形對(duì)角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會(huì)證明過程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力.

若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時(shí),由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時(shí),則有a+b=-c.此時(shí)k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯(cuò)提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯(cuò).本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯(cuò)誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會(huì)類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.

解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯(cuò)點(diǎn)是對(duì)△BED是等腰三角形認(rèn)識(shí)不足,解題的關(guān)鍵是對(duì)折疊后的幾何形狀要有一個(gè)正確的分析.三、板書設(shè)計(jì)矩形矩形的定義:有一個(gè)角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個(gè)角都是直角兩組對(duì)邊分別平行且相等對(duì)角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會(huì)邏輯推理的思維價(jià)值.

教師姓名 課程名稱數(shù)學(xué)班 級(jí) 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識(shí)目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對(duì)應(yīng) 技能目標(biāo):1、會(huì)解一元二次方程 2、會(huì)畫二次函數(shù)的圖像 3、能結(jié)合圖像寫出一元二次不等式的解集 情感目標(biāo):體會(huì)知識(shí)之間的相互關(guān)聯(lián)性,體會(huì)數(shù)形結(jié)合思想的重要性教學(xué) 重點(diǎn) 和 難點(diǎn)重點(diǎn): 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點(diǎn): 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對(duì)應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊(cè)) 多媒體課件評(píng) 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識(shí)點(diǎn)融會(huì)貫通,數(shù)形結(jié)合的思想方法在這有很好的運(yùn)用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。

【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點(diǎn)】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】 一元二次不等式的解法?!窘虒W(xué)設(shè)計(jì)】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。【課時(shí)安排】 2課時(shí)(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識(shí),填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個(gè)根有 1 個(gè)根有 0 個(gè)根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時(shí),x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點(diǎn)的坐標(biāo)是什么?(3)當(dāng)y<0時(shí),x的取值范圍是什么?總結(jié):由此看到,通過對(duì)函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集

2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個(gè)反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個(gè)別輔導(dǎo),學(xué)生完畢教師給予評(píng)估肯定。II鞏固練習(xí):限時(shí)完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對(duì)兩種變化量,并且這兩個(gè)變化的量可以寫成 (k為常數(shù),k≠0)同時(shí)要注意幾點(diǎn)::①常數(shù)k≠0;②自變量x不能為零(因?yàn)榉帜笧?時(shí),該式?jīng)]意義);③當(dāng) 可寫為 時(shí)注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個(gè)變量相對(duì)應(yīng) 的任意一對(duì)對(duì)應(yīng)值的積來求得,只要k確定了,這個(gè)函數(shù)就確定了。

(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動(dòng):教師出示例題,提出問題;學(xué)生活動(dòng):學(xué)生通過例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4

2.如何找一條線段的黃金分割點(diǎn),以及會(huì)畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗(yàn)來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書設(shè)計(jì)

方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來解決問題,我們一定要把知識(shí)融會(huì)貫通,在解決問題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長,此時(shí)OP為半徑的長;當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。