提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版初中七年級數(shù)學下冊探索三角形全等的條件說課稿2篇

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學九年級上冊正方形的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象2教案

    觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內(nèi)?對于函數(shù) ,兩支曲線又分別位于哪個象限內(nèi)?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結(jié)在進行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內(nèi),當k<0時,它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。

  • 北師大初中數(shù)學九年級上冊投影的概念與中心投影2教案

    北師大初中數(shù)學九年級上冊投影的概念與中心投影2教案

    五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習題5.1八、板書設計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達能力.

  • 北師大初中數(shù)學九年級上冊線段的比和成比例線段2教案

    北師大初中數(shù)學九年級上冊線段的比和成比例線段2教案

    (三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    (1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

  • 北師大初中數(shù)學九年級上冊概率與游戲的綜合運用2教案

    北師大初中數(shù)學九年級上冊概率與游戲的綜合運用2教案

    三、典型例題,應用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應注意什么?2. 你還有哪些收獲和疑惑?

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)2教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)2教案

    提示:要學會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動畫,情景再現(xiàn).3.學法小結(jié):(1)對較復雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設計意圖:生動的情景引入,意在激發(fā)學生的學習興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學法小結(jié),著重強調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學生的興趣,學生參與熱情很高;借助圖表分析,有效地克服了難點,學生基本都能借助圖表分析,在老師的引導下列出方程組。4.變式訓練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗担挥种傥粩?shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。常嚽笤瓉淼模澄粩?shù).

  • 北師大版初中數(shù)學九年級下冊確定圓的條件說課稿

    北師大版初中數(shù)學九年級下冊確定圓的條件說課稿

    設計說明:設計這組測驗為了反饋學生學習情況,第1題較簡單,也是為了讓提高學生學習士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學生的不同需求.教師可們采用搶答方式調(diào)動學生積極性,學生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習題A組1,2,3; B層 習題B組.設計說明:設計第1題的原因保證了知識的完整性,學生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應用了新學知識,又給學生提供了更廣泛地思考空間.第2題,主要是讓學生進一步鞏固新學知識,規(guī)范解題步驟. 在作業(yè)設計時,既面向全體學生,又尊重學生的個體差異,以掌握知識形成能力為主要目的.

  • 北師大初中數(shù)學九年級上冊位似多邊形及其性質(zhì)2教案

    北師大初中數(shù)學九年級上冊位似多邊形及其性質(zhì)2教案

    (3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學生自己完成)三、課堂練習 活動3 教材習題小結(jié):談談你這節(jié)課學習的收獲.

  • 北師大初中九年級數(shù)學下冊圓內(nèi)接正多邊形教案

    北師大初中九年級數(shù)學下冊圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——“希望工程”義演教案1

    北師大初中七年級數(shù)學上冊應用一元一次方程——“希望工程”義演教案1

    方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點三:工程問題一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任務,剩下的工程由乙隊完成,問乙隊還需幾天才能完成?解析:首先設乙隊還需x天才能完成,由題意可得等量關(guān)系:甲隊干三天的工作量+乙隊干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設乙隊還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時間=工作總量,當題中沒有一些必須的量時,為了簡便,應設其為1.三、板書設計“希望工程”義演題目特點:未知數(shù)一般有兩個,等量關(guān)系也有兩個解題思路:利用其中一個等量關(guān)系設未知數(shù),利用另一個等量關(guān)系列方程

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——水箱變高了教案1

    北師大初中七年級數(shù)學上冊應用一元一次方程——水箱變高了教案1

    解:設截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關(guān)系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

  • 北師大初中七年級數(shù)學上冊利用移項與合并同類項解一元一次方程教案1

    北師大初中七年級數(shù)學上冊利用移項與合并同類項解一元一次方程教案1

    (3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應用題把一批圖書分給七年級某班的同學閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學生?解析:根據(jù)實際書的數(shù)量可得相應的等量關(guān)系:3×學生數(shù)量+20=4×學生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設這個班有x個學生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結(jié):列方程解應用題時,應抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關(guān)系的詞語,以便從中找出合適的等量關(guān)系列方程.

  • 北師大版初中數(shù)學八年級下冊一元一次不等式與一次函數(shù)說課稿2篇

    北師大版初中數(shù)學八年級下冊一元一次不等式與一次函數(shù)說課稿2篇

    由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合。教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動”―――學生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。2、“探”―――引導學生動手畫圖,合作討論。通過探究學習激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設計力求做到與學生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。4、“滲”―――在整個教學過程中,滲透用聯(lián)系的觀點看待數(shù)學問題的辨證思想。

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關(guān)系1教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關(guān)系1教案

    方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.

上一頁123...121314151617181920212223下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。