
在展示交流,精講點撥環(huán)節(jié)學生答題過程中老師巡視,發(fā)現(xiàn)不同的方法讓學生去板演。1、學生展示學生展示不同的方法,并進行講解,讓學生充分說出自己的思路及解題過程。在這一環(huán)節(jié),學生進行了充分的互動,有質(zhì)疑,有解疑,有糾錯,有評價,有反饋,。2、教師根據(jù)學生的方法及時利用多媒體進行演示,讓學生更加直觀的理解不同的解題思路。然后變換題中的條件,讓學生自己列方程解答。3、說一說生活中那些情境也可以用類似的等量關(guān)系式解答,這一設(shè)計讓數(shù)學回歸生活,加強了數(shù)學與生活的聯(lián)系。在達標檢測,強化鞏固環(huán)節(jié)老師以課本為主,讓學生完成課本練一練的2,4基礎(chǔ)題。又進行了拓展,出了一道稍有難度的題進行拓展練習。既鞏固了基礎(chǔ),又做到了分層優(yōu)化。在小結(jié)評價,自我反思環(huán)節(jié)讓學生說說本節(jié)課的收獲,可以是學習上的,也可以是習慣上的。讓學生進行了自我反思,反思自己的不足,加以改正。

一、說教材:1.說課內(nèi)容:本節(jié)課的內(nèi)容是北師大版5年級數(shù)學下冊第8單元的《復式折線統(tǒng)計圖》。2.教材分析:這節(jié)課的內(nèi)容是在學生學習了單式折線統(tǒng)計圖和復式條形統(tǒng)計圖的基礎(chǔ)上教學的。這節(jié)課的內(nèi)容包括制作復式折線統(tǒng)計圖的必要性、制作方法以及對這種統(tǒng)計圖的分析預測。教材在設(shè)計中,主要突出了以下兩個方面:(1)對比。為了方便比較甲、乙兩個城市各月的降水量,把兩個單式折線統(tǒng)計圖畫在同一幅圖上,變成復式折線統(tǒng)計圖。讓學生感受出現(xiàn)復式折線統(tǒng)計圖的必要性和其帶來的好處。(2)讀圖。通過對復式折線統(tǒng)計圖中兩條折線升降的分析,對數(shù)據(jù)進行合理的預測,這也是課標的要求。3.教材的地位和作用:本課的學習,不但可以用來解決日常生活中的一些實際問題,也是今后學習更多其他統(tǒng)計圖的重要基礎(chǔ)。

【教學程序】(一)導入:1.聽《烏鴉喝水》的小故事。2.揭題:師:你知道烏鴉是通過什么方法喝到水的嗎?這蘊涵了什么道理?這就是今天我們要學習的新課題《體積單位》。(出示課題)(二)教學“體積單位”。師出示圖,請生比一比誰的體積大?[說明:教師通過兩個長方體體積大小的比較,學生發(fā)現(xiàn)不好比較,從而指出計量物體的體積要用統(tǒng)一的體積單位。從而引入“體積單位”的教學]師:為了更準確的比較圖中這兩個長方體體積的大小,我們可以把它們切成若干個同樣大小的正方體,只要數(shù)一數(shù),每個長方體包含有幾個這樣的小正方體,就能準確地比出它們的大小。請生數(shù)一數(shù),告訴老師誰的體積比較大?學生匯報(注意讓學生說出數(shù)的方法)。師:像計量長度需要長度單位,計量面積需要面積單位,我們計量體積也需要有“體積單位”。為了更準確地計量出物體體積的大小,我們可以像圖中這樣用同樣大小的正方體作為體積單位。

1.要有充分的直觀操作。學生思維的特點一般的是從感性認識開始,然后形成表象,通過一系列的思維活動,上升到理性認識。本課的教學采用直觀操作法,是一個重要的環(huán)節(jié)。2.啟發(fā)學生獨立思考。學生是學習的主體,只有引導學生獨立地發(fā)現(xiàn)問題、思考問題、解決問題,才能收到事半功倍的教學效果。3.講練結(jié)合。4.充分運用知識的遷移規(guī)律,引導學生掌握新知識。教學過程:三、說教學過程:(一)、創(chuàng)設(shè)情境上課前,教師先給大家講一個與今天的學習內(nèi)容有關(guān)的故事,希望同學們認真地聽、認真地想。故事是這樣的:大象過生日啦!那天來了很多的朋友,有小兔、小猴等等等等,可熱鬧啦!在眾多的朋友中只數(shù)小兔最高興,它樂什么呢?原來它知道了蛋糕的分配方案,認為自己分的蛋糕比小猴的大。蛋糕是這樣分配的:分給小兔的蛋糕是棱長10厘米的正方體,分給小猴的蛋糕是棱長1分米的方體。(分別出示兩塊同樣大小的正方體,用10厘米和1分米表示它們的棱長)

三、說學法有效的數(shù)學學習活動不是單純地依賴模仿與記憶,而是一個有目的的、主動建構(gòu)知識的過程。為此,我十分重視學生學習方法的指導,在本節(jié)課中,我指導學生學習的方法為:觀察發(fā)現(xiàn)法、動手操作法、自主探究法、合作交流法,讓他們在說一說、擺一擺、填一填、做一做、想一想等一系列活動中探索長方體體積的計算方法。我力求以"長方體、正方體體積"這一數(shù)學知識為載體,通過學生主動參與、自主探究、發(fā)現(xiàn)結(jié)論的過程,使學生的數(shù)學認知結(jié)構(gòu)建立在自己的實踐經(jīng)驗和主動建構(gòu)之上。四、說教學流程教學時.我安排了情景引入.揭示課題,自主探究.推導公式,利用關(guān)系.類推公式,鞏固練習.運用公式,全課總結(jié).交流評價五個環(huán)節(jié).(一)激情引趣.揭示課題.首先,通過比較生活中一些物體的大小,復習體積概念。

3.設(shè)計實驗。怎樣測量一粒黃豆的體積。這是在第二題的基礎(chǔ)上進行的一個設(shè)計實驗,再次回到“有趣的測量”,讓學生不僅會計算,還要會自己想辦法測量生活中的很多不規(guī)則物體的體積,這也是我們這節(jié)課要達到的目的。練習完之后教師再適時將學生帶進數(shù)學萬花筒,感受兩千多年前阿基米德的風采,激發(fā)了學生對數(shù)學的興趣,增強他們主動探索科學知識的意識。(四)、總結(jié)回顧評價反思在這一環(huán)節(jié)讓學生講一講收獲、談一談感受,讓學生自己評價自己,使學生體驗到成功探索和解決問題的樂趣,樹立學好數(shù)學的信心,為學生自主探索提供更為廣闊的空間六、說板書設(shè)計本節(jié)課我采用重點內(nèi)容提綱式板書,簡單明了,重點突出。利用不同色彩的區(qū)分吸引學生的注意力,突出“轉(zhuǎn)化”這一重要思想。

學生掌握數(shù)學概念過程的本身就是一個把教材知識結(jié)構(gòu)轉(zhuǎn)化成自己認知結(jié)構(gòu)的過程,這一過程的結(jié)果可能形成正確的數(shù)學概念,也可能由于主、客觀原因而形成一些錯誤的數(shù)學概念。因此,在這一階段有兩大任務(wù)要完成,一是強化已經(jīng)形成的正確認識,二是修正某些錯誤認識,使掌握的概念都能正確反映數(shù)學對象的本質(zhì)屬性。在情境中解決問題是從新課教學到學生獨立作業(yè)之間的一個重要環(huán)節(jié),目的在于鞏固所學知識,并把知識轉(zhuǎn)化為技能。教材“試一試”和“練一練”的第1、2題,讓學生通過觀察、思考,并且在有了比較充分的感性體驗的基礎(chǔ)上揭示體積概念及讓學生充分感受同一物體形狀變了,但體積保持不變,增強實際體驗。“練一練”第3題,讓學生體會到如果每個杯子的大小不同,那么3杯就可能等于2杯,這是為后面體積單位作鋪墊。

五、說教學過程為了高效地實現(xiàn)教學目標,整個教學過程分為如下幾個環(huán)節(jié)進行:環(huán)節(jié)一:創(chuàng)設(shè)情景,導入新課在新課開始時,用多媒體課件以PPT的形式展示幾幅含有長方體和正方體的圖片。即建筑物,道路和家具。讓學生通過觀察圖片找出其中的長方體。然后,讓學生聯(lián)系到生活中的物體,找出2到3個長方體的實物。并在這些實物的基礎(chǔ)上呈現(xiàn)長方體的幾何圖形。也由此導入新課——長方體的認識,板書課題,長方體的認識。環(huán)節(jié)二:合作學習,探究新知。在這個環(huán)節(jié)中,我設(shè)計了這樣幾個活動,來落實教學目標?;顒右唬皵?shù)一數(shù)”。把學生分成幾個小組,讓他們觀察手中的長方體紙盒,請他們找出長方體有幾個面,再找出面與面之間的線,由此導入棱的概念,通過觀察,他們發(fā)現(xiàn)每三條棱相交于一點。由此導入頂點的概念,再找出有幾個頂點。并在設(shè)計的表格中板書。

光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設(shè)計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據(jù)單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象

一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.

解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.

探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結(jié)合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.

分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應當乘的單項式,分子也相應地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練

解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.

解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎(chǔ)上進行的拓展延伸,在教學時要給學生足夠主動權(quán)和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.

解:(1)設(shè)第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設(shè)計列分式方程解應用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準等量關(guān)系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.

解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.

∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。