提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大初中八年級數(shù)學(xué)下冊分式方程的應(yīng)用教案

  • 北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)1教案

    北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)1教案

    解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實數(shù),但在解決實際問題的過程中,自變量的取值范圍要根據(jù)實際情況來確定.解題過程中應(yīng)該注意對題意的正確理解.三、板書設(shè)計反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識到理性認(rèn)識的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗數(shù)學(xué)來源于生活實際,并為生活實際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  • 北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)2教案

    北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)2教案

    2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個別輔導(dǎo),學(xué)生完畢教師給予評估肯定。II鞏固練習(xí):限時完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當(dāng) 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應(yīng) 的任意一對對應(yīng)值的積來求得,只要k確定了,這個函數(shù)就確定了。

  • 北師大初中數(shù)學(xué)九年級上冊相似多邊形2教案

    北師大初中數(shù)學(xué)九年級上冊相似多邊形2教案

    (2)相似多邊形的對應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質(zhì).活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學(xué)生活動:學(xué)生通過例題運用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應(yīng)重點關(guān)注:(1)學(xué)生參與活動的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4

  • 北師大初中數(shù)學(xué)九年級上冊相似多邊形1教案

    北師大初中數(shù)學(xué)九年級上冊相似多邊形1教案

    (2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.

  • 北師大初中數(shù)學(xué)七年級上冊整式說課稿

    北師大初中數(shù)學(xué)七年級上冊整式說課稿

    按此規(guī)律,第n個式子是 。師生活動:學(xué)生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結(jié)論。設(shè)計意圖:進(jìn)一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學(xué)式子表示實際問題中的數(shù)量關(guān)系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數(shù),我們班80%的同學(xué)喜歡上數(shù)學(xué)課,那么0.8p 就可以表示我們班喜歡數(shù)學(xué)課的人數(shù)。學(xué)生思考、交流后發(fā)言五、練習(xí)檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數(shù)比a的 倍小5,則這個數(shù)為 ;(3)全校學(xué)生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購買計算機(jī) x 臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,則學(xué)校三年共購買計算機(jī) 臺;(5)某班有a名學(xué)生,現(xiàn)把一批圖書分給全班學(xué)生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數(shù),十位上的數(shù)字為a,個位上的數(shù)字b,則這個兩位數(shù)為 .師生活動:學(xué)生板演,師生共同評價總結(jié)注意(5)帶分?jǐn)?shù)化假分?jǐn)?shù)設(shè)計意圖:進(jìn)一步提高用含有字母的式子表示實際問題中的數(shù)量關(guān)系的能力。

  • 北師大初中七年級數(shù)學(xué)上冊利用移項與合并同類項解一元一次方程教案2

    北師大初中七年級數(shù)學(xué)上冊利用移項與合并同類項解一元一次方程教案2

    練習(xí):現(xiàn)在你能解答課本85頁的習(xí)題3.1第6題嗎?有一個班的同學(xué)去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個班共多少同學(xué)?小結(jié)提問:1、今天你又學(xué)會了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關(guān)系又有何共同特點?學(xué)生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個不同式子相等作業(yè):1、 必做題:課本習(xí)題2、 選做題:將一塊長、寬、高分別為4厘米、2厘米、3厘米的長方體橡皮泥捏成一個底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)

  • 北師大初中七年級數(shù)學(xué)上冊利用移項與合并同類項解一元一次方程教案1

    北師大初中七年級數(shù)學(xué)上冊利用移項與合并同類項解一元一次方程教案1

    (3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應(yīng)用題把一批圖書分給七年級某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學(xué)生?解析:根據(jù)實際書的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個班有x個學(xué)生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結(jié):列方程解應(yīng)用題時,應(yīng)抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關(guān)系的詞語,以便從中找出合適的等量關(guān)系列方程.

  • 北師大初中數(shù)學(xué)八年級上冊建立平面直角坐標(biāo)系確定點的坐標(biāo)2教案

    北師大初中數(shù)學(xué)八年級上冊建立平面直角坐標(biāo)系確定點的坐標(biāo)2教案

    活動目的:(1)通過小組討論活動,讓學(xué)生理解坐標(biāo)系的特點,并能應(yīng)用特點解決問題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團(tuán)結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補(bǔ)充)某地為了發(fā)展城市群,在現(xiàn)有的四個中小城市A,B,C,D附近新建機(jī)場E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各點的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進(jìn)步,從知識和能力上兩個方面總結(jié),老師予于肯定和鼓勵。目的:鼓勵學(xué)生大膽發(fā)言,敢于表達(dá)自己的觀點,同時學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵,激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習(xí)題5.5。B類:完成A類同時,補(bǔ)充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標(biāo);(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。

  • 北師大初中數(shù)學(xué)九年級上冊正方形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級上冊正方形的性質(zhì)2教案

    1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補(bǔ) D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中數(shù)學(xué)九年級上冊正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級上冊正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定2教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定2教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級上冊概率與游戲的綜合運用2教案

    北師大初中數(shù)學(xué)九年級上冊概率與游戲的綜合運用2教案

    三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再從中隨機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

  • 北師大初中九年級數(shù)學(xué)下冊弧長及扇形的面積教案

    北師大初中九年級數(shù)學(xué)下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應(yīng)用;(重點)2.通過復(fù)習(xí)圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應(yīng)用這些公式解決一些問題.(難點)一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程2教案

    三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時,是一元二次方程,當(dāng)m__________時,是一元一次方程。四、學(xué)習(xí)體會:五、課后作業(yè)

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程1教案

    解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實際需求,注明自變量的取值范圍.三、板書設(shè)計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c   分別稱為二次項、一次項和   常數(shù)項,a,b分別稱為二次   項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1教案

    解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標(biāo)為(1,1.4),點B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用

上一頁123...8910111213141516171819下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。