
如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

③設(shè)每件襯衣降價(jià)x元,獲得的利潤(rùn)為y元,則定價(jià)為 元 ,每件利潤(rùn)為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤(rùn),最大利潤(rùn)為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤(rùn)最大?☆ 歸納反思 ☆總結(jié)得出求最值問(wèn)題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過(guò)配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測(cè) ☆ 1、用長(zhǎng)為6m的鐵絲做成一個(gè)邊長(zhǎng)為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長(zhǎng)為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場(chǎng)調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問(wèn)每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?

解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過(guò)中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?

方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問(wèn)題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.

1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()

解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

首先請(qǐng)學(xué)生分析:過(guò)B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來(lái)解.教師可請(qǐng)一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開(kāi)疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過(guò)評(píng)價(jià)黑板上的板演,總結(jié)解坡度問(wèn)題需要注意的問(wèn)題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過(guò)數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡?wèn)題時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)

解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常??紤]此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

(2)∵點(diǎn)G是BC的中點(diǎn),BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計(jì)1.平行四邊形的判定定理3:對(duì)角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點(diǎn)到另一條直線的距離都相等,這個(gè)距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過(guò)分組討論、操作探究以及合作交流等方式來(lái)進(jìn)行,在探究?jī)蓷l平行線間的距離時(shí),要讓學(xué)生進(jìn)行合作交流.在解決有關(guān)平行四邊形的問(wèn)題時(shí),要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.

一、說(shuō)教材《分?jǐn)?shù)的簡(jiǎn)單應(yīng)用》是人教版小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)第八單元的知識(shí)。教材安排主要是先讓學(xué)生理解一個(gè)物體或者幾個(gè)物體都可以當(dāng)成一個(gè)整體進(jìn)行平均分,會(huì)把一個(gè)整體平均分為幾部分,選擇其中的幾部分。根據(jù)學(xué)生的生活經(jīng)驗(yàn)和知識(shí)背景及課本的知識(shí)特點(diǎn),本節(jié)課的教學(xué)目標(biāo)定為:1、知識(shí)與技能:經(jīng)歷解決問(wèn)題的過(guò)程,能根據(jù)分?jǐn)?shù)的含義,利用整數(shù)乘、除法來(lái)解決問(wèn)題。2、過(guò)程與方法:通過(guò)分一分、拿一拿,理解情境中的數(shù)量關(guān)系,探求解決求一個(gè)數(shù)的幾分之幾的方法.3、情感態(tài)度與價(jià)值觀:感悟數(shù)形結(jié)合的思想,初步了解分?jǐn)?shù)的在實(shí)際生活中的應(yīng)用和價(jià)值。本課教學(xué)的重點(diǎn)是:引導(dǎo)學(xué)生根據(jù)分?jǐn)?shù)含義分析數(shù)量關(guān)系,并用整數(shù)乘除法來(lái)解決問(wèn)題。

三、關(guān)于課本素材的處理課本素材:“雞兔同籠”和“以繩測(cè)井”兩個(gè)古代趣味問(wèn)題??紤]到八年級(jí)學(xué)生獨(dú)立思考和探索問(wèn)題的能力都已達(dá)到一定的水平,特別增加了“自主探索,分層推進(jìn)”這一環(huán)節(jié),為每一位學(xué)生都提供了發(fā)展的空間。同時(shí)師生之間、學(xué)生之間共同研討,形成教與學(xué)的和諧統(tǒng)一。凡能列二元一次方程組解決的問(wèn)題,一般都可列一元一次方程來(lái)解,這就影響了用方程組去分析和解決問(wèn)題,使學(xué)生形成思維定勢(shì)。為此通過(guò)對(duì)“雞兔同籠”多種求解方法的分析,使學(xué)生經(jīng)歷知識(shí)的發(fā)生過(guò)程,認(rèn)識(shí)到列方程組的必要性和優(yōu)越性,從而解決學(xué)生的思維定勢(shì)的束縛。 以上是我對(duì)《雞兔同籠》這一節(jié)課的一點(diǎn)思考,希望各位專家和老師指正,最后,我用布魯克菲爾德的一句話來(lái)結(jié)束我的發(fā)言:讓學(xué)生學(xué)會(huì)討論、合作交流,討論會(huì)使學(xué)生成為知識(shí)的共同創(chuàng)造者!

1.通過(guò)實(shí)例體會(huì)一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會(huì)利用數(shù)軸解較簡(jiǎn)單的一元一次不等式組。4.培養(yǎng)學(xué)生分析、解決實(shí)際問(wèn)題的能力。5.通過(guò)實(shí)際問(wèn)題的解決,體會(huì)數(shù)學(xué)知識(shí)在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問(wèn)題過(guò)程中勤于思考、樂(lè)于探究,體驗(yàn)解決問(wèn)題策略的多樣性,體驗(yàn)數(shù)學(xué)的價(jià)值。四、教學(xué)重、難點(diǎn)分析教學(xué)重點(diǎn):1.理解有關(guān)不等式組的概念.2.會(huì)解由兩個(gè)一元一次不等式組成的不等式組.教學(xué)難點(diǎn):在數(shù)軸上確定解集.五、教學(xué)手段分析本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡(jiǎn)單、形象生動(dòng)、反饋及時(shí)等優(yōu)點(diǎn),直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動(dòng)積極性。

一、教材分析1.教材的地位與作用本節(jié)課是在學(xué)生學(xué)習(xí)了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對(duì)象是生活中的常見(jiàn)全等圖形,主要是探究全等圖形的概念和特征,通過(guò)系列學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生體驗(yàn)數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)良好的學(xué)習(xí)品質(zhì)。同時(shí)這節(jié)課的內(nèi)容也是下一節(jié)學(xué)習(xí)全等三角以及三角形全等的判定的奠基石,它對(duì)知識(shí)的聯(lián)系起到承上啟下的作用。2.教學(xué)目標(biāo)依據(jù)《課程標(biāo)準(zhǔn)》要求本階段的學(xué)生應(yīng)初步會(huì)運(yùn)用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實(shí)生活中出現(xiàn)的實(shí)際問(wèn)題,體會(huì)數(shù)學(xué)與生活的密切聯(lián)系,增進(jìn)對(duì)數(shù)學(xué)的理解和學(xué)好數(shù)學(xué)的信心。因此我確立本節(jié)課的教學(xué)目標(biāo)如下:知識(shí)技能目標(biāo):通過(guò)實(shí)例,使學(xué)生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識(shí)別出全等的圖形過(guò)程與方法:通過(guò)觀察,動(dòng)手實(shí)驗(yàn),培養(yǎng)學(xué)生動(dòng)手操作能力、觀察能力以及合作與交流的能力

一.情境引入:師:我們生活在一個(gè)變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長(zhǎng)高長(zhǎng)粗.生3:我杯子里的水喝一口少一口.(說(shuō)著就拿起杯子喝水,引起同學(xué)哈哈大笑)師: 你這個(gè)變化中有幾個(gè)量在變化?生3:兩個(gè),一個(gè)是喝的口數(shù),一個(gè)是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來(lái)越少.生4:那我的這張紙?jiān)剿涸叫。ù藭r(shí)該同學(xué)順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學(xué)們點(diǎn)頭稱是)師: 你這個(gè)變化中又有幾個(gè)量?它們又是怎么變化的?生4:兩個(gè),一個(gè)是撕的次數(shù),另一個(gè)是紙的大?。畮煟耗敲茨膫€(gè)量隨哪個(gè)量的變化而變化的呢?

一、教材分析軸對(duì)稱是現(xiàn)實(shí)生活中廣泛存在的一種現(xiàn)象,本章內(nèi)容定位于生活中軸對(duì)稱現(xiàn)象的分析,全章內(nèi)容按照“直觀認(rèn)識(shí)——探索性質(zhì)——簡(jiǎn)單圖形——圖案設(shè)計(jì)”這一主線展開(kāi),而這節(jié)課作為全章的最后一節(jié),主要作用是將本章內(nèi)容進(jìn)行回顧和深化,使學(xué)生通過(guò)折疊、剪紙等一系列活動(dòng)對(duì)生活中的軸對(duì)稱現(xiàn)象由“直觀感受”逐漸過(guò)渡到從“數(shù)學(xué)的角度去理解”,最后通過(guò)圖案設(shè)計(jì)再將“數(shù)學(xué)運(yùn)用到生活中”。軸對(duì)稱是我們探索一些圖形的性質(zhì),認(rèn)識(shí)、描述圖形形狀和位置關(guān)系的重要手段之一。在后面的學(xué)習(xí)中,還將涉及用坐標(biāo)的方法對(duì)軸對(duì)稱刻畫,這將進(jìn)一步深化我們對(duì)軸對(duì)稱的認(rèn)識(shí),也為“空間與圖形”后繼內(nèi)容的學(xué)習(xí)打下基礎(chǔ)。二、學(xué)情分析學(xué)生之前已經(jīng)認(rèn)識(shí)了軸對(duì)稱現(xiàn)象,通過(guò)扎紙?zhí)剿髁溯S對(duì)稱的性質(zhì),并在對(duì)簡(jiǎn)單的軸對(duì)稱圖形的認(rèn)識(shí)過(guò)程中加深了對(duì)軸對(duì)稱的理解,但是對(duì)生活中的軸對(duì)稱現(xiàn)象仍然以“直觀感受”為主。

(1)上午9時(shí)的溫度是多少?12時(shí)呢?(2)這一天的最高溫度是多少?是在幾時(shí)達(dá)到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過(guò)了多長(zhǎng)時(shí)間?(4)在什么時(shí)間范圍內(nèi)溫度在上升?在什么時(shí)間范圍內(nèi)溫度在下降?(5)圖中的A點(diǎn)表示的是什么?B點(diǎn)呢?(6)你能預(yù)測(cè)次日凌晨1時(shí)的溫度嗎?說(shuō)說(shuō)你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時(shí)間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當(dāng)體溫達(dá)到40℃時(shí),駱駝開(kāi)始出汗,體溫也開(kāi)始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時(shí),駱駝的體溫達(dá)到最低點(diǎn).3、如下圖,是駱駝的體溫隨時(shí)間變化而變化的的關(guān)系圖,據(jù)圖回答下列問(wèn)題:

《用尺規(guī)作三角形》是北師大版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書.數(shù)學(xué)》七年級(jí)下冊(cè)第五章第五節(jié)的內(nèi)容。在之前的學(xué)習(xí)中,我們已經(jīng)學(xué)會(huì)用尺規(guī)作線段和角,而邊和角是三角形的基本元素,這節(jié)課主要是學(xué)習(xí)利用尺規(guī)按要求做三角形,表面上看是操作的過(guò)程,但教科書中提出了有關(guān)探究性問(wèn)題,目的是引導(dǎo)學(xué)生關(guān)注作圖背后的數(shù)學(xué)思考,即用尺規(guī)作三角形用到了兩個(gè)三角形全等的條件,因此本課教學(xué)應(yīng)引導(dǎo)學(xué)生積極思考,使學(xué)生體會(huì)到作圖的每一步驟都是有根 有 據(jù)的.二、教學(xué)目標(biāo)分析參照《課程標(biāo)準(zhǔn)》的要求及教材的特點(diǎn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征 ,我制定了如下教學(xué)目標(biāo):1、知識(shí)與技能:1.會(huì)用尺規(guī)按要求作三角形:已知三邊作三角形,已知兩角及夾邊作三角形,已知兩邊及夾角作三角形.2.會(huì)寫出三角形的已知、求作、作法. 3.能對(duì)新作三角形給出合理的解釋.

說(shuō)教學(xué)難點(diǎn):圖形的放大與縮小的原理是“大小改變,形狀不變“。針對(duì)小學(xué)生的年齡和認(rèn)知特點(diǎn),教材中“圖形的放大與縮小”從對(duì)應(yīng)邊的比相等來(lái)進(jìn)行安排,而對(duì)應(yīng)角的不變也是形狀不變必備的條件,是學(xué)生體會(huì)圖形的相似所必需的。學(xué)生在學(xué)習(xí)的過(guò)程中很有可能會(huì)質(zhì)疑到這一問(wèn)題。(為什么直角三角形只需要同時(shí)把兩條直角邊放大與縮???)所以我把“學(xué)生在觀察、比較、思考和交流等活動(dòng)中,感受圖形放大、縮小,初步體會(huì)圖形的相似。(對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角不變)”做為本節(jié)課的難點(diǎn)。說(shuō)教法、學(xué)法:通過(guò)直觀演示,情景激趣,結(jié)合生活讓學(xué)生形成感性認(rèn)識(shí);引導(dǎo)學(xué)生經(jīng)過(guò)觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學(xué)習(xí)、驗(yàn)證等過(guò)程形成理性認(rèn)識(shí)。教學(xué)過(guò)程:(略)

(3)在某乒乓球質(zhì)量檢測(cè)中,一只乒乓球超出標(biāo)準(zhǔn)質(zhì)量0.02克,記作+0.02克,那么-0.03克表示什么?解:(1)扣20分,記作-20分;(2)沿順時(shí)針?lè)较蜣D(zhuǎn)12圈記作-12圈;(3)-0.03克表示乒乓球的質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量0.03克。4、讓學(xué)生回顧現(xiàn)已學(xué)過(guò)的數(shù),將他們進(jìn)行分類,最后教師總結(jié)。(三)課堂練習(xí),及時(shí)反饋為了讓更多的學(xué)生參與進(jìn)來(lái),通過(guò)練習(xí)鞏固知識(shí)發(fā)現(xiàn)不足,教師及時(shí)得到反饋,檢查教學(xué)效果,采取相應(yīng)措施,我采用了一下習(xí)題:(電腦演示)在練習(xí)過(guò)程中培養(yǎng)學(xué)生養(yǎng)成用所學(xué)知識(shí)去思考問(wèn)題、判斷問(wèn)題、解決問(wèn)題的好習(xí)慣。學(xué)生的練習(xí)分出了梯度,讓不同學(xué)生的學(xué)生都有所提高,有助于貫徹因材施教的教學(xué)原則。各組練習(xí)在進(jìn)行中,進(jìn)行后,都要掌握學(xué)生的完成情況,讓學(xué)生舉手,加以統(tǒng)計(jì),及時(shí)糾錯(cuò)及再講解。在學(xué)生回答問(wèn)題時(shí),我通過(guò)語(yǔ)言、目光、動(dòng)作給予鼓勵(lì)與告訴,發(fā)揮評(píng)價(jià)的增益效應(yīng)。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。