提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線(xiàn)和圓的位置關(guān)系及切線(xiàn)的性質(zhì)教案

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線(xiàn)和圓的位置關(guān)系及切線(xiàn)的性質(zhì)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線(xiàn)和圓的位置關(guān)系及切線(xiàn)的性質(zhì)教案

    解析:(1)由切線(xiàn)的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線(xiàn)的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線(xiàn),∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線(xiàn)的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線(xiàn)連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)的判定及三角形的內(nèi)切圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線(xiàn),根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)長(zhǎng)定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)長(zhǎng)定理教案

    (3)若要滿(mǎn)足結(jié)論,則∠BFO=∠GFC,根據(jù)切線(xiàn)長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)直線(xiàn)與圓的位置關(guān)系說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)直線(xiàn)與圓的位置關(guān)系說(shuō)課稿

    設(shè)計(jì)意圖這一組習(xí)題的設(shè)計(jì),讓每位學(xué)生都參與,通過(guò)學(xué)生的主動(dòng)參與,讓每一位學(xué)生有“用武之地”,深刻體會(huì)本節(jié)課的重要內(nèi)容和思想方法,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動(dòng))引導(dǎo)學(xué)生進(jìn)行課堂小結(jié),給出下列提綱,并就學(xué)生回答進(jìn)行點(diǎn)評(píng)。(1)通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些判斷直線(xiàn)與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問(wèn)題?(學(xué)生活動(dòng))學(xué)生發(fā)言,互相補(bǔ)充。(教師活動(dòng))布置作業(yè)(1)書(shū)面作業(yè):P70練習(xí)8.4.41、2題(2)實(shí)踐調(diào)查:尋找圓與直線(xiàn)的關(guān)系在生活中的應(yīng)用。設(shè)計(jì)意圖通過(guò)讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實(shí)際,對(duì)課后的書(shū)面作業(yè)分為三個(gè)層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時(shí),在知識(shí)拓展時(shí)起激學(xué)生探究的熱情,讓每一個(gè)不同層次的學(xué)生都可以獲得成功的喜悅。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓周角和圓心角的關(guān)系教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓周角和圓心角的關(guān)系教案

    解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常??紤]此定理.三、板書(shū)設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)比例的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)比例的性質(zhì)2教案

    請(qǐng)寫(xiě)出 推理過(guò)程:∵ ,在兩邊同時(shí)加上1得, + = + .兩邊分別通分得: 思考:請(qǐng)仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實(shí)例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個(gè)條件?三、 鞏固練習(xí):1.在相同時(shí)刻的物高與影長(zhǎng)成比例,如果一建筑在地面上影長(zhǎng)為50米,高為1.5米的測(cè)竿的影長(zhǎng)為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)矩形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)矩形的性質(zhì)1教案

    解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問(wèn)題是常見(jiàn)的問(wèn)題,本題的易錯(cuò)點(diǎn)是對(duì)△BED是等腰三角形認(rèn)識(shí)不足,解題的關(guān)鍵是對(duì)折疊后的幾何形狀要有一個(gè)正確的分析.三、板書(shū)設(shè)計(jì)矩形矩形的定義:有一個(gè)角是直角的平行四邊形    叫做矩形矩形的性質(zhì)四個(gè)角都是直角兩組對(duì)邊分別平行且相等對(duì)角線(xiàn)互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過(guò)程,把握平行四邊形的演變過(guò)程,遷移到矩形的概念與性質(zhì)上來(lái),明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會(huì)邏輯推理的思維價(jià)值.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)菱形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)菱形的性質(zhì)2教案

    1. _____________________________________________2. _____________________________________________你會(huì)計(jì)算菱形的周長(zhǎng)嗎?三、例題精講例1.課本3頁(yè)例1例2.已知:在菱形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測(cè):1.已知四邊形ABCD是菱形,O是兩條對(duì)角線(xiàn)的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長(zhǎng)是________cm.2.菱形ABCD的周長(zhǎng)為40cm,兩條對(duì)角線(xiàn)AC:BD=4:3,那么對(duì)角線(xiàn)AC=______cm,BD=______cm.3.若菱形的邊長(zhǎng)等于一條對(duì)角線(xiàn)的長(zhǎng),則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對(duì)角線(xiàn)長(zhǎng)為12厘米,則別一條對(duì)角線(xiàn)長(zhǎng)為_(kāi)_______厘米.5.菱形的兩條對(duì)角線(xiàn)把菱形分成全等的直角三角形的個(gè)數(shù)是( ).(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長(zhǎng)和面積

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)比例的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)比例的性質(zhì)1教案

    若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時(shí),由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時(shí),則有a+b=-c.此時(shí)k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯(cuò)提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯(cuò).本題題目中并沒(méi)有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯(cuò)誤是忽略討論a+b+c=0這種情況.三、板書(shū)設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過(guò)程,體會(huì)類(lèi)比的思想,提高學(xué)生探究、歸納的能力.通過(guò)問(wèn)題情境的創(chuàng)設(shè)和解決過(guò)程進(jìn)一步體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線(xiàn)的位置關(guān)系》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線(xiàn)的位置關(guān)系》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線(xiàn)的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問(wèn)題】 平面內(nèi)兩條既不重合又不平行的直線(xiàn)肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動(dòng)腦思考 探索新知 如圖8-12所示,兩條相交直線(xiàn)的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線(xiàn)的方程的公共解.因此解兩條直線(xiàn)的方程所組成的方程組,就可以得到兩條直線(xiàn)交點(diǎn)的坐標(biāo). 觀(guān)察圖8-13,直線(xiàn)、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個(gè)正角,分別為、、、,其中與,與為對(duì)頂角,而且. 圖8-13 我們把兩條直線(xiàn)相交所成的最小正角叫做這兩條直線(xiàn)的夾角,記作. 規(guī)定,當(dāng)兩條直線(xiàn)平行或重合時(shí),兩條直線(xiàn)的夾角為零角,因此,兩條直線(xiàn)夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線(xiàn)、的夾角,即. 當(dāng)直線(xiàn)與直線(xiàn)的夾角為直角時(shí)稱(chēng)直線(xiàn)與直線(xiàn)垂直,記做.觀(guān)察圖8-14,顯然,平行于軸的直線(xiàn)與平行于軸的直線(xiàn)垂直,即斜率為零的直線(xiàn)與斜率不存在的直線(xiàn)垂直. 圖8-14 講解 說(shuō)明 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)平行線(xiàn)的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)平行線(xiàn)的性質(zhì)教案

    解析:平行線(xiàn)中的拐點(diǎn)問(wèn)題,通常需過(guò)拐點(diǎn)作平行線(xiàn).解:(1)∠AED=∠BAE+∠CDE.理由如下:過(guò)點(diǎn)E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無(wú)論平行線(xiàn)中的何種問(wèn)題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問(wèn)題分解到簡(jiǎn)單模型中,問(wèn)題便迎刃而解.三、板書(shū)設(shè)計(jì)平行線(xiàn)的性質(zhì):性質(zhì)1:兩條平行線(xiàn)被第三條直線(xiàn)所截,同位角相等;性質(zhì)2:兩條平行線(xiàn)被第三條直線(xiàn)所截,內(nèi)錯(cuò)角相等;性質(zhì)3:兩條平行線(xiàn)被第三條直線(xiàn)所截,同旁?xún)?nèi)角互補(bǔ).平行線(xiàn)的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書(shū)寫(xiě),培養(yǎng)學(xué)生的邏輯思維能力,鼓勵(lì)學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動(dòng)口、動(dòng)手、動(dòng)腦中學(xué)數(shù)學(xué)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    (3)分別在射線(xiàn)OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖2.問(wèn):此題目還可以 如何畫(huà)出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過(guò)點(diǎn)O分別作射線(xiàn)OA, OB, OC,OD;(3)分別在射線(xiàn)OA, OB, OC, OD的反向延長(zhǎng)線(xiàn)上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫(huà)的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過(guò)點(diǎn)O分別作 射線(xiàn)OA,OB,OC,OD;(3)分別在射線(xiàn)OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    ①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫(huà)法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線(xiàn)上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫(huà)位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫(huà)位似圖形的關(guān)鍵是畫(huà)出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫(huà)圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫(huà)圖時(shí)位似中心的取法有多種,對(duì)畫(huà)圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫(huà)圖最簡(jiǎn)便.三、板書(shū)設(shè)計(jì)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的性質(zhì)1教案

    如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書(shū)設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過(guò)對(duì)反比例函數(shù)圖象的全面觀(guān)察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語(yǔ)言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線(xiàn)分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類(lèi)型三】 利用正方形的性質(zhì)證明線(xiàn)段相等如圖,已知過(guò)正方形ABCD的對(duì)角線(xiàn)BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線(xiàn)互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線(xiàn)互相垂直平分證明線(xiàn)段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線(xiàn),這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線(xiàn)長(zhǎng)為( );2))正方形ABCD中,對(duì)角線(xiàn)AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線(xiàn)AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線(xiàn)互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線(xiàn)相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線(xiàn)互相垂直平分 C對(duì)角線(xiàn)平分一組對(duì)角 D對(duì)角線(xiàn)相等. 6)、正方形對(duì)角線(xiàn)長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫(xiě)2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系1教案

    方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書(shū)設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過(guò)觀(guān)察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問(wèn)題、發(fā)現(xiàn)關(guān)系的過(guò)程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀(guān)察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過(guò)交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系2教案

    3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系2教案

    2、猜想 一元二次方程的兩個(gè)根 的和與積和原來(lái)的方程有什么聯(lián)系?小組交流。3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)2教案

    【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀(guān):通過(guò)學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線(xiàn)自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫(huà)y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫(huà)y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡(jiǎn)單的二次函數(shù)y=x2入手去研究

12345678910111213下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!

PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。