
一、教材分析本節(jié)內(nèi)容主要講述了社會實踐在文化創(chuàng)新中的作用和意義,明確了社會實踐是文化創(chuàng)新的源泉,也是文化創(chuàng)新的動力,文化創(chuàng)新的作用,既表現(xiàn)為不斷推動社會實踐的發(fā)展,又表現(xiàn)為不斷促進民族文化的繁榮。我們要從中體會社會實踐的重要性和意義。二、教學目標(一)知識目標(1) 理解文化發(fā)展的實質(zhì)在于創(chuàng)新;理解社會實踐是文化創(chuàng)新的源泉(2) 理解文化創(chuàng)新的作用;理解人民群眾是社會實踐的主體、文化創(chuàng)新的主體。(二)能力目標培養(yǎng)學生列舉實例說明社會實踐在 文化創(chuàng)新中的作用。情感、態(tài)度價值觀目標:幫助學生充分認識建 設(shè)社會主義先進文化的意義,增強民族文化的自豪感。 (三)情感、態(tài)度與價值觀目標情感、態(tài)度及價值觀目標:通過學習本課題內(nèi)容,初步理解文化創(chuàng)新的、意義、作用,做一個有“文化”的人,認識到文化創(chuàng)新的重要性。深刻理解建。

1、重點:如何處理主次矛盾、矛盾主次方面的關(guān)系,具體問題具體分析2、難點:弄清主次矛盾、矛盾主次方面的含義四、學情分析高二學生具備了一定的抽象思維和綜合分析的能力,但實踐能力普遍較弱。本框所學知識理論性較強,主次矛盾和矛盾的主次方面這兩個概念極易混淆,學生較難理解。而且本框內(nèi)容屬方法論要求,需要學生將理論與實踐緊密結(jié)合,學生在運用理論分析實際問題上還比較薄弱。五、教學方法:1、探究性學習法。組織學生課后分小組進行探究性學習。在探究性學習中進行:“自主學習”、“合作學習”。讓學生進行自主學習的目的是:讓學生作學習的主人,“愛學、樂學”,并培養(yǎng)學生終身學習的能力;讓學生進行合作學習的目的是:在小組分工合作中,在生生互動( 學生與學生互動)中,促使學生克服“以自我為中心,合作精神差,實踐能力弱“等不足,培養(yǎng)綜合素質(zhì)。2、理論聯(lián)系實際法。關(guān)注生活,理論聯(lián)系實際,學以致用。

一、教材分析:本節(jié)課是高中思想政治課必修4《生活與哲學》第三單元第八課第二框的內(nèi)容?!墩n程標準》對本節(jié)教學內(nèi)容規(guī)定為:(1)事物的發(fā)展是前進性和曲折性的辯證關(guān)系原理以及理解新生事物為什么是不可戰(zhàn)勝的和新事物的發(fā)展為什么不是一帆風順的。(2)事物發(fā)展的兩種狀態(tài):量變與質(zhì)變和量變與質(zhì)變的辯證統(tǒng)一原理。本節(jié)課框題設(shè)二個目:二、教學目標:1、 識記 理解 運用 新舊事物的含義2、衡量新舊事物的根本標志 新事物為什么能夠戰(zhàn)勝舊事物?3、新事物的發(fā)展為什么不是一帆風順的? 運用事物的發(fā)展是前進性和曲折性統(tǒng)一的原理來正確看待我國社會主義在前進中出現(xiàn)的困難以及人生道路的曲折4、學會運用量變、質(zhì)變關(guān)系原理分析問題三、教學重點和難點:重點:事物的發(fā)展是前進性和曲折性的統(tǒng)一,任何事物的變化是量變與質(zhì)變的統(tǒng)一。難點:新事物的發(fā)展為什 么不是一帆風順的即事物發(fā)展的曲折性。

1、(1)黃筌為什么無法改動吳道子的畫?(2)如果讓你改動這幅畫,你會怎樣做?談?wù)勀愕目捶??!筇骄刻崾荆?1)吳道子的畫是一個整體,黃筌之所以無法改動此畫就是因為畫中食指挾鬼眼是整幅畫的一部分,它的存在處于畫的被支配地位,只能服從和服務(wù)于整幅畫。一旦改動,則失去了其整體的功能。(2)不改。因為整體與部分又是辯證統(tǒng)一的。2、統(tǒng)籌城鄉(xiāng)經(jīng)濟社會發(fā)展,要跨出傳統(tǒng)的就農(nóng)業(yè)論農(nóng)業(yè)、就農(nóng)村論農(nóng)村的局限,站在國民經(jīng)濟發(fā)展的全局角度,建設(shè)社會主義新農(nóng)村。這是現(xiàn)階段解決“三農(nóng)”問題的基本立場和思維方法。這一基本立場和思維方法體現(xiàn)的唯物辯證法道理( )A.要注意系統(tǒng)內(nèi)部機構(gòu)的優(yōu)化B.要著眼于事物的整體性C.要堅持主觀和客觀的統(tǒng)一 D.要重視部分的作用,搞好局部解析:材料強調(diào)的是整體的重要性,要求站在國民經(jīng)濟發(fā)展的全局角度,統(tǒng)籌城鄉(xiāng)經(jīng)濟社會發(fā)展。A、C、D三個選項不符合題意。正確答案為B。

◆重要圖釋1、圖2.4“洞庭湖及荊江地區(qū)飛機遙感影像”圖此圖為飛機遙感影像成像后利用地理信息系統(tǒng)在室內(nèi)分析處理而成。飛機遙感時正值陰雨天氣,雖然圖面較暗,但地物仍然具有較高的分辨率。圖中湖、河等水域為黑色。居民點的顏色為淺灰色,農(nóng)田格局依稀可見。2、圖2.5“洞庭湖及荊江地區(qū)衛(wèi)星遙感影像”圖此圖為衛(wèi)星遙感影像成像后利用地理信息系統(tǒng)在室內(nèi)分析處理而成。圖中深色的范圍表示水體,城市呈灰白色。圖中看不出農(nóng)田的格局,說明衛(wèi)星遙感對地物的分辨率沒有飛機遙感高?!緦W習策略】由于3S技術(shù)涉及計算機技術(shù)、地球科學、信息科學、系統(tǒng)科學等多個領(lǐng)域,技術(shù)含量高、綜合性強,對于高中生來說,比較難理解,所以,本節(jié)課在介紹有關(guān)技術(shù)時,可借助教材中的流程圖和影像圖片。教師應采用多媒體輔助教學手段,增強學生對“3S”技術(shù)的直觀認識。

1、圖5.3“長江中游防洪形勢圖”(1)讀圖后,說出長江中游的主要水文特征:多曲流、多支流、多湖泊。(2)分析“千里長江,險在荊江”的原因及其解決的措施:荊江河段特別彎曲,有“九曲回腸”之稱,水流不暢,泥沙大量淤積,使河床高出兩岸平地,形成“懸河”。一旦發(fā)生洪水,堤防漫潰直接威脅江漢平原和洞庭湖區(qū)的農(nóng)田、企業(yè)、城市、交通要道和人民生命財產(chǎn)安全。新中國成立后,治理荊江的措施主要有:修建荊江分洪工程,完成了幾處裁彎取直工程,加固了荊江大堤。(3)在圖上找出主要分洪區(qū)。2、圖5.5“長江三峽圖”(1)掌握長江三峽的組成、名稱及其在圖上的位置:說明:①長江三峽的長度數(shù)據(jù)有多種,如192千米、193千米、204千米208千米等。②有的著作中把大寧河寬谷劃入瞿塘峽,把香溪寬谷劃入西陵峽。

本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉(zhuǎn)化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.

客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應關(guān)系,這種關(guān)系常常可用函數(shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學和其他學科中的重要性. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.

本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內(nèi)容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;

本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學學科素養(yǎng)1.數(shù)學抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學運算:求函數(shù)零點近似值;4.數(shù)學建模:通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用.

《數(shù)學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術(shù)工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應用,同時又為高中數(shù)學中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點,從而求得方程的近似解. a.數(shù)學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;

(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時間?(4)在什么時間范圍內(nèi)溫度在上升?在什么時間范圍內(nèi)溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當體溫達到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關(guān)系圖,據(jù)圖回答下列問題:

一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大?。畮煟耗敲茨膫€量隨哪個量的變化而變化的呢?

(三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學的實際應用。有兩種解題思路:枚舉法和方程法。

方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當?shù)姆椒?/p>

解:(1)電動車的月產(chǎn)量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產(chǎn)量y是時間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢,實質(zhì)是觀察自變量增大時,因變量是隨之增大還是減?。鍟O(shè)計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎(chǔ),教學中立足于學生的認知基礎(chǔ),激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎(chǔ)上迅速遷移到新知上來

方法總結(jié):絕對值小于1的數(shù)也可以用科學記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學記數(shù)法不同的是其所使用的是負整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)前面的0的個數(shù)所決定.【類型二】 將用科學記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點向左移動相應的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a的小數(shù)點向左移動n位所得到的數(shù).三、板書設(shè)計用科學記數(shù)法表示絕對值小于1的數(shù):一般地,一個小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負整數(shù).從本節(jié)課的教學過程來看,結(jié)合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調(diào)動,在拓展學生學習空間的同時,又有效地保證了課堂學習質(zhì)量

內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法.

解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設(shè)計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.

學習目標1.掌握兩個一次函數(shù)圖像的應用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。