
8. 2022 年,俄烏沖突以來,美方不斷泛化國家安全概念,濫用出口管制措施, 多次以所謂“人權”等為由,對中國企業(yè)無理打壓,嚴重破壞國際經(jīng)貿規(guī)則。 同時美國不顧中方多次警告,將航母駛入南海進行挑釁,美國國會操弄“臺灣地圖牌” 。面對美方的無端打壓和干涉,我國應該 ( )A.謙讓機遇,合作共贏,與美國共發(fā)展B.抓住機遇,迎接挑戰(zhàn),積極謀求發(fā)展C.集中力量,增強實力,掌控世界趨勢D.主動迎擊,不畏強權,鞏固霸主地位9. 中華詩詞濃縮了中華文化的精華,經(jīng)過歲月的沉淀仍然閃爍著時代的光芒。 從下列經(jīng)典詩句中得到的啟示,你認為不正確的是 ( )A.“萬物并育而不相害,道并行而不相?!薄趪H交往中我國要堅持合作、共贏的理念,做到互信互利 B.“國雖大,好戰(zhàn)必亡;天下雖平,忘戰(zhàn)必亡”— 中國要屹立于世界民族之林,必須通過戰(zhàn)爭樹立國際地位C.“天與不取,反受其咎;時至不行,反受其殃”—機遇稍縱即逝,我們要抓住機遇,勇于創(chuàng)新,追求發(fā)展D.“同心掬得滿庭芳”—各族人民要鑄牢中華民族共同體意識,手足相親、守望相助10.從漫畫“新四大發(fā)明”中,下列認識和理解正確的有 ( )①我們要培育壯大經(jīng)濟發(fā)展新動能②我國把提升發(fā)展質量放在首位③中國決定著世界經(jīng)濟發(fā)展的趨勢④中國與世界各國共享發(fā)展成果

①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結:(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關鍵是畫出圖形中頂點的對應點.畫圖的方法大致有兩種:一是每對對應點都在位似中心的同側;二是每對對應點都在位似中心的兩側.(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設計

地球一小時(Earth Hour)是世界自然基金會(WWF)應對全球氣候變化所提出的一項倡議,希望家庭及商界用戶關上不必要的電燈及耗電產(chǎn)品一小時。來表明他們對應對氣候變化行動的支持。過量二氧化碳排放導致的氣候變化目前已經(jīng)極大地威脅到地球上人類的生存。公眾只有通過改變全球民眾對于二氧化碳排放的態(tài)度,才能減輕這一威脅對世界造成的影響。地球一小時在3月的最后一個星期六20:30~21:30期間熄燈?;顒佑蓙恚骸暗厍?小時”也稱“關燈一小時”,是世界自然基金會在2007年向全球發(fā)出的一項倡議:呼吁個人、社區(qū)、企業(yè)和政府在每年三月最后一個星期六20:30~21:30期間熄燈1小時,以此來激發(fā)人們對保護地球的責任感,以及對氣候變化等環(huán)境問題的思考,表明對全球共同抵御氣候變暖行動的支持。這是一項全球性的活動,世界自然基金會于2007年首次在悉尼倡導之后,以驚人的速度席卷全球,大家都來參加這個活動。[1] “地球1小時”活動首次于2007年3月31日在澳大利亞的悉尼展開,一下子吸引了超過220萬悉尼家庭和企業(yè)參加;隨后,該活動以驚人的速度迅速席卷全球。在2008年,WWF(中國)對外聯(lián)絡處透露,全球已經(jīng)有超過80個國家、大約1000座城市加入活動。2013年,包括悉尼歌劇院、帝國大廈、東京塔、迪拜塔、白金漢宮在內的各國標志性建筑也在當?shù)貢r間晚八點半熄燈一小時。[2] ,其中包括巴勒斯坦、法屬圭亞那、加拉帕戈斯群島、盧旺達、圣赫勒那島、蘇里南、突尼斯等首次參與“地球一小時”的國家和地區(qū)。在中國,北京鳥巢、水立方、世貿天階等標志性建筑同時熄燈,同一時段,從上海東方明珠到武漢黃鶴樓,從臺北101到香港天際100觀景臺,中國各地多個標志性建筑均熄燈一小時,全國共有127個城市加入“地球一小時”活動。

1.自己選擇植物的花瓣(牽牛花、月季花)、蔬菜(紫卷心菜、胡蘿卜) 在研缽中搗爛,加入酒精(它有消毒作用,可使制得的指示劑長期 保存)浸泡,用紗布將浸泡出的汁液過濾或擠出,就得到指示劑, 2.把制好的指示劑裝入試劑瓶,貼上標簽備用。 把食醋、稀鹽酸、稀氫氧化鈉、澄清石灰水,分別滴在兩個 白色點滴板上,用石蕊、酚酞分別滴在上述溶液上,通過顏 色變化檢驗它們的酸堿性。 用玻璃棒分別蘸取上述溶液,滴在pH試紙上,然后對照標準 比色卡比較,得出pH值,也就是酸堿度。 把上述溶液滴在白色點滴板上,用滴管吸一下你自制的指示劑,滴在滴板的溶液里,觀察顏色變化,每用一種指示劑,換一下滴板的溶液。 把所得到顏色變色變化的信息和pH值數(shù)據(jù)填入教材第70頁的表中。 3.取少量土壤樣品,將土壤樣品與蒸餾水按1∶5的質量比在燒杯中混合, 充分攪拌后靜置,用玻璃棒蘸澄清的液體,滴在pH試紙上,然后對照 標準比色卡記錄讀數(shù)。

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.

一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.

教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.

方法總結:垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結:解題的關鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.

1.胡蘿卜先生的胡子可真長??!胡蘿卜先生繼續(xù)走著,接下來會發(fā)生什么有趣的事情呢?(學生發(fā)揮想象,預測接下來的故事情節(jié)。) 2.自讀課文第4-8自然段,看看與你們自己的預測一樣不一樣吧!學生自己讀故事,發(fā)現(xiàn)自己的預測和文本內容不一樣時及時修正自己的想法。(1)出示關鍵句:線實在太短了,他的風箏只能飛過屋頂。根據(jù)課文內容,預測接下來的故事發(fā)展。(2)出示關鍵句:鳥太太正在找繩子晾小鳥的尿布。根據(jù)插圖中鳥太太遇見胡蘿卜先生驚喜的神態(tài),預測接下來的故事發(fā)展。 3.文章寫完了嗎?為什么?(結尾的省略號就告訴我們這個故事還沒有結束。) 既然沒有結束,我們就來續(xù)編故事吧!可以結合上面的男孩的語言、動作續(xù)編故事,也可以有自己新奇的想法。大家之前預測的故事發(fā)展只要合乎情理也可以繼續(xù)預測。

(1)板書“奶酪”,學生齊讀。 (2)提問:二年級時,我們學過哪個關于奶酪的故事?(學生自由回答)(3)教師小結:是啊,在《狐貍分奶酪》這個故事里,為了從小熊兄弟的手里騙走美味的奶酪,狐貍可真是費盡心機哪!2.引導:今天我們要學的課文也講到了奶酪,小螞蟻想方設法搬奶酪,看來奶酪很誘人呢!奶酪的味道到底怎么樣呢?我們一起來品味品味吧。(板書課題,學生跟讀)3.設疑激趣(1)出示課文中的句子: ◇奶酪多誘人??!抬著它,不要說吃,單是聞聞,都要淌口水。 ◇他低下頭,嗅嗅那點兒奶酪渣,味道真香!

1.同學們,通過剛才的閱讀,我們了解了主人公從一粒種子到木地板的變化歷程,你覺得這粒種子不斷地追求“很好”的過程,給你帶來了怎樣的啟示?2.小組內交流,討論課文蘊含的道理。3.教師點撥:這粒種子不斷成長,渴望成材。成材之后,又在不同的階段無私地奉獻自己的才華和力量,實現(xiàn)了自我價值和社會價值的統(tǒng)一,是值得尊重的。4.學生說自己的體會。5.課文主旨探究。這是一篇優(yōu)美動人的童話故事,寫了一粒種子,懷揣夢想,努力生長,長成了一棵高大的樹,在經(jīng)歷了變成手推車、椅子、木地板的過程中,告訴我們做人要像這棵樹一樣,有理想、有追求,并且為了實現(xiàn)自己的理想而努力奮斗的道理。

【設計意圖】學習事理說明文,要讓學生在自主歸納的過程中,初步感知事理說明文說明“事理”這一基本特點,把握事理說明文和事物說明文的不同之處。引導學生通過學習課文,對科學方法產(chǎn)生自己的體會,并運用到自己的思考中。四、總結存儲1.教師小結本文是一篇事理說明文,作者把一門科學——物候學介紹得淺顯易懂,饒有趣味。全文采用邏輯順序說明,思路清晰明了:描述物候現(xiàn)象——做出科學解釋——追究因果關系——闡述研究意義。這種從現(xiàn)象到本質的認識方法和行文思路值得我們學習。本文語言嚴謹而生動,兼具說明的科學性和生動性,是一篇極有價值的科普文,是科學家竺可楨科學精神和科學思想的具體體現(xiàn)。文章啟發(fā)我們:科學距離我們并不遙遠,就在我們的身邊,而想要探索它,就要有科學精神,擴大科學知識儲備,掌握科學方法,勇于探索科學奧秘。

(2)英國女士提出要見錢鍾書,錢鍾書既沒有直接同意,也沒有一口回絕,而是運用“類比法”,將自己的作品《圍城》比作一個不錯的“雞蛋”,將自己比作下那個蛋的“母雞”,用幽默的自嘲回絕了對方見面的請求,有禮有度,表現(xiàn)了大作家的聰明機智。(3)好的應對是依據(jù)語境,快速調動思維,迅速做出反應,做到隨機應變、巧妙應對。案例中,年輕畫家沒有意識到自己畫畫的能力不夠強,只是一味地抱怨畫不好賣。門采爾快速調動思維,隨機應變,變換了對方話語中的部分詞語的語序,就巧妙地回答了年輕畫家的問題,既給年輕畫家點明了畫賣得慢的原因,又指導了他該怎么做。師小結:在溝通與交流的過程中難免產(chǎn)生碰撞和沖突,如何讓別人心服口服,話怎么講才能讓人聽進去,這是值得我們思考與學習的。2.布置作業(yè)(1)任選一題完成:①找一個自己應對失敗的例子,重新設計應對的語言。 如:好朋友想約你去網(wǎng)吧打游戲,你怎么應對?
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。