
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則紙盒底面的長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實(shí)際需求,注明自變量的取值范圍.三、板書(shū)設(shè)計(jì)一元二次方程概念:只含有一個(gè)未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱(chēng)為二次項(xiàng)、一次項(xiàng)和 常數(shù)項(xiàng),a,b分別稱(chēng)為二次 項(xiàng)系數(shù)和一次項(xiàng)系數(shù)本課通過(guò)豐富的實(shí)例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會(huì)方程的模型思想.通過(guò)本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會(huì)一元二次方程也是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辯證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿(mǎn)足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)

方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書(shū)設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過(guò)觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問(wèn)題、發(fā)現(xiàn)關(guān)系的過(guò)程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過(guò)交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.

∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書(shū)設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過(guò)對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡(jiǎn)單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.

首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠(chǎng)規(guī)定:該廠(chǎng)家屬區(qū)的每戶(hù)居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶(hù)居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶(hù)2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶(hù)居民3月、4月的用電情況和交費(fèi)情況

三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線(xiàn)相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線(xiàn)互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線(xiàn)互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠(chǎng)規(guī)定:該廠(chǎng)家屬區(qū)的每戶(hù)居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶(hù)居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶(hù)2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶(hù)居民3月、4月的用電情況和交費(fèi)情況

∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線(xiàn)互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線(xiàn)________________的四邊形是矩形;(2)對(duì)角線(xiàn)____________的平行四邊形是矩形;(3)對(duì)角線(xiàn)__________的平行四邊形是正方形;(4)對(duì)角線(xiàn)________________的矩形是正方形;(5)對(duì)角線(xiàn)________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線(xiàn)上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線(xiàn)長(zhǎng)為( );2))正方形ABCD中,對(duì)角線(xiàn)AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線(xiàn)AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線(xiàn)互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線(xiàn)相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線(xiàn)互相垂直平分 C對(duì)角線(xiàn)平分一組對(duì)角 D對(duì)角線(xiàn)相等. 6)、正方形對(duì)角線(xiàn)長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫(xiě)2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類(lèi)型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長(zhǎng),當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

2、猜想 一元二次方程的兩個(gè)根 的和與積和原來(lái)的方程有什么聯(lián)系?小組交流。3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

解:(1)設(shè)第一次落地時(shí),拋物線(xiàn)的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門(mén)員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線(xiàn)AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類(lèi)問(wèn)題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)問(wèn)題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

【新課導(dǎo)入】演講比賽是提高同學(xué)口語(yǔ)和表達(dá)能力的一項(xiàng)競(jìng)賽,不僅要求參賽者有良好的文字功底和修養(yǎng),同時(shí)也要有良好的口才和表達(dá)能力,以及很強(qiáng)的感染力,通過(guò)自己的敘述將觀眾帶入自己的世界,同時(shí)演講比賽也是一個(gè)人綜合素質(zhì)的體現(xiàn),要想更多的人認(rèn)識(shí)自己,了解自己,首先就得學(xué)會(huì)說(shuō)話(huà),學(xué)會(huì)推銷(xiāo)自己,通過(guò)自己的介紹讓同學(xué)了解自己,喜歡自己,好的演講口才終身受用。【重點(diǎn)解讀】充分的賽前準(zhǔn)備是比賽成功的基礎(chǔ)。建議大家:(1)舉辦小組選拔賽。選擇同一題目撰寫(xiě)演講稿的同學(xué)自由組成小組,先在小組內(nèi)進(jìn)行選拔比賽,每組選出一到兩名同學(xué)參加班級(jí)演講。小組選拔時(shí),一方面要重視演講的內(nèi)容,同時(shí)要考慮現(xiàn)場(chǎng)的聲音、語(yǔ)氣、表情、動(dòng)作等,通過(guò)綜合評(píng)價(jià),推舉優(yōu)秀代表。

本環(huán)節(jié)通過(guò)評(píng)委宣布比賽規(guī)則和評(píng)分細(xì)則,為下面比賽活動(dòng)中,學(xué)生學(xué)會(huì)欣賞和評(píng)價(jià)演講打下基礎(chǔ)。三、八仙過(guò)海賽一賽(主持人組織演講比賽)演講比賽的程序:1.各組參賽同學(xué)抽簽,確定演講順序。2.參加比賽的同學(xué)按照順序進(jìn)行演講,每位選手演講完畢,評(píng)委現(xiàn)場(chǎng)打分。3.評(píng)委根據(jù)評(píng)分細(xì)則評(píng)分,去掉最高分和最低分,記分員核算出選手的平均分,并由主持人公布最后得分。4.每位參賽者演講結(jié)束,評(píng)委和教師進(jìn)行簡(jiǎn)要點(diǎn)評(píng)。5.第二輪由每組得分最高的選手進(jìn)行即興演講拉票,決出班級(jí)前三名。6.主持人宣布比賽結(jié)果。7.活動(dòng)結(jié)束。【設(shè)計(jì)意圖】本環(huán)節(jié)通過(guò)演講比賽和評(píng)價(jià)兩個(gè)活動(dòng)的交互進(jìn)行,讓學(xué)生進(jìn)一步理解演講技巧的具體運(yùn)用方法,從而提高演講能力。在整個(gè)演講活動(dòng)中,學(xué)生組織活動(dòng)和實(shí)施活動(dòng)的能力可以得到充分地展現(xiàn)和發(fā)揮。四、尺短寸長(zhǎng)評(píng)一評(píng)1.精彩的演講結(jié)束了,在這次演講比賽中,給你留下深刻印象的演講有哪些?請(qǐng)說(shuō)明理由。(生自由發(fā)言,對(duì)演講活動(dòng)進(jìn)行總結(jié)評(píng)價(jià))2.在這次精彩的演講比賽中,大家有哪些收獲?請(qǐng)結(jié)合活動(dòng)過(guò)程具體來(lái)談。

2、通過(guò)用“樹(shù)葉飄落到××地方,變成××顏色”,拓展想象,進(jìn)一步認(rèn)識(shí)顏色。 3、在活動(dòng)中感受拓印畫(huà)的特殊效果美,體驗(yàn)不同繪畫(huà)形式帶來(lái)的樂(lè)趣?! 』顒?dòng)準(zhǔn)備: 1.幼兒收集各種形狀的樹(shù)葉。 2.紅、黃、藍(lán)、綠、白顏料,顏料盤(pán)中放上水粉筆?! ?3.色或刷有黑色底的紙,每組兩塊抹布?! 』顒?dòng)過(guò)程: 一、幼兒收集的樹(shù)葉,引出主題?! ?教師:秋天到了,樹(shù)葉玩起了變顏色的魔術(shù)。有的樹(shù)葉變黃了,有的樹(shù)葉變紅了,它們還會(huì)變成什么顏色呢?仔細(xì)看它們是怎么變的。 二、學(xué)習(xí)用樹(shù)葉拓引畫(huà)?! ?(1)用“樹(shù)葉飄落到××地方,染上了×顏色”語(yǔ)句,拓展幼兒的想象,增加活動(dòng)的趣味性。

2、積極參與操作活動(dòng),感受趣味藝術(shù)活動(dòng)的快樂(lè)?! 』顒?dòng)準(zhǔn)備 1、操作材料:報(bào)紙球、顏料、油畫(huà)棒 2、教學(xué)材料:課件、實(shí)物青菜,范畫(huà) 活動(dòng)過(guò)程 一、演示課件,看整塊菜地 寶寶們看這是什么呀?在這塊菜地里呀種了好多好多的青菜。 二、出示實(shí)物青菜,認(rèn)識(shí)菜幫子和菜葉?! ?1、今天呀,菜地里的青菜寶寶要到我們?。?)班來(lái)做客,讓我們一起來(lái)歡迎他吧?! ?2、扮演青菜寶寶和小朋友打招呼“?。?)班的寶寶你們好!” 3、那你們知道青菜寶寶長(zhǎng)的是什么樣子的,他的身上有什么呢?引導(dǎo)幼兒說(shuō)出菜葉和菜根。他呀是由上下兩部分組成的,上面的是菜葉,下面的是菜根?! ?4、青菜寶寶是什么顏色的?(綠色) 4、那你們這個(gè)青菜是誰(shuí)種出來(lái)的呀?(農(nóng)民伯伯)

[幼兒分析] 中班幼兒對(duì)周?chē)缕妗⒂腥さ氖挛锖同F(xiàn)象有明顯的興趣和好奇心想象力也比較豐富,喜歡探索和提問(wèn),教師在活動(dòng)中從多方面去引導(dǎo),讓幼兒在情景中運(yùn)用已有的知識(shí)和經(jīng)驗(yàn),認(rèn)識(shí)到科學(xué)的重要性,并去發(fā)現(xiàn)問(wèn)題,探索問(wèn)題,大膽想象,進(jìn)行創(chuàng)新。 [設(shè)計(jì)思路] 中班幼兒有濃厚的好奇心,首先讓幼兒觀看科幻畫(huà),引導(dǎo)幼兒觀察,激發(fā)幼兒的學(xué)習(xí)興趣和好奇心。接下來(lái)設(shè)置情景讓幼兒進(jìn)行大膽的科學(xué)幻想,并相互交流,這個(gè)過(guò)程不僅發(fā)展了幼兒的想象力、創(chuàng)造力,還可以提高幼兒的語(yǔ)言表達(dá)能力及團(tuán)結(jié)友愛(ài)的精神。然后鼓勵(lì)幼兒把自己幻想的內(nèi)容畫(huà)下來(lái),鍛煉幼兒的動(dòng)手操作能力。畫(huà)完后對(duì)幼兒的作品給予評(píng)價(jià)、表?yè)P(yáng)、獎(jiǎng)勵(lì),讓幼兒相互交流自己的作品,體驗(yàn)成功的喜悅,增強(qiáng)自信心。讓幼兒認(rèn)識(shí)到環(huán)境、資源、生態(tài)的重要性,從小形成環(huán)保意識(shí)。
PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。