
本節(jié)課的設計是以教學大綱和教材為依據(jù),遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。本節(jié)課采用教具輔助教學,旨在呈現(xiàn)更直觀的形象,提高學生的積極性和主動性,并提高課堂效率。2、學法研究“贈人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的知識,首先教師應創(chuàng)造一種環(huán)境,引導學生從已知的、熟悉的知識入手,讓學生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領(lǐng)域,從不同角度去分析、解決新問題,通過基礎練習、提高練習和拓展練習發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

教學媒體設計充分利用多媒體教學,將powerpoint、《幾何畫板》兩種軟件結(jié)合起來制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動畫性,更加形象的反映出作圖的過程,增加數(shù)學的美感,激發(fā)學生作圖的興趣。教學評價設計本節(jié)課,我合理、充分利用了多媒體教學的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應用,畫出了標準、動畫形式的二次函數(shù)的圖像,讓抽象思維不強的學生,更加形象的結(jié)合圖形,分析說出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學思想。為了突出重點,攻破難點,我要求學生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學過程中以學生為主體,老師起主導作用的教學原則。本節(jié)課,讓學生有觀察,有思考,有討論,有練習,充分調(diào)動了學生的學習興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準備。

教學過程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設計 (一)、新課引入教師提問:一個直角三角形中,一個銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設計意圖】回顧上節(jié)課所學的內(nèi)容,便于后面教學的開展。 (二)、探究新知活動一、探索特殊角的三角函數(shù),并填寫課本表格[問題] 1、觀察一副三角尺,其中有幾個銳角?它們分別等于多少度? [問題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問題] 3、cos30°等于多少?tan30°呢? [問題] 4、我們求出了30°角的三個三角函數(shù)值,還有兩個特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:

設計意圖:最后是當堂訓練,目標檢測,這一環(huán)節(jié)要盡量讓學生獨立完成,使訓練高效,在學生訓練時教師要巡回輔導,重點關(guān)注課堂表現(xiàn)不太突出的學生,由于本課時內(nèi)容多,訓練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓練的時間預估不足。四、教學思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設符合學生實際的問題情境,讓學生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學生的應用意識及分析問題解決問題的能力,培養(yǎng)了學生的數(shù)學建模能力及轉(zhuǎn)化的思維方法。2.充分相信學生并為學生提供展示自己的機會,課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學生形成積極主動的求知態(tài)度。

1、圓的半徑是 ,假設半徑增加 時,圓的面積增加 。(1)寫出 與 之間的關(guān)系表達式;(2)當圓的半徑分別增加 , , 時,圓的面積增加多少?!驹O計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。2、籬笆墻長 ,靠墻圍成一個矩形花壇,寫出花壇面積 與長 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍?!驹O計意圖】此題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習第1題,習題2.1第1題;

5、課本練習:P129引導學生運用隨機數(shù)表來模擬試驗過程并給予解答。問題2:有四個鬮,其中兩個分別代表兩件獎品,四個人按順序依次抓鬮來決定這兩件獎品的歸屬,先抓的人中獎率一定大嗎?教法:可組織學生用試驗的方法來說明問題,對于試驗的結(jié)果是有說服力的,很容易使學生相信摸獎的次序?qū)χ歇劦母怕蕸]有影響。問題3:彩民甲研究了近幾期這種體育彩票的中獎號碼,發(fā)現(xiàn)數(shù)字06和08出現(xiàn)的次數(shù)最多,他認為,06和08是“幸運號碼”,因此,他在所買的每一注彩票中都選上了06和08。你認為他這樣做有道理嗎?教法說明:要讓學生看到試驗方法對試驗結(jié)果的影響:1、 因為開獎用的36個球是均勻的、無差別的,所以每個號碼被選為中獎號碼的可能性是一樣的,不存在“幸運號碼”。

注意強調(diào)概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學生求∠A,∠B的正切及時強化學生對概念的3、正切函數(shù)的應用理解通過實際問題的解答進一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學生進行正切的變式訓練,讓學生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習的安插注意梯度,讓不同的學生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點及注意點五、達標測試具體思路:把幾個問題分為四個等級,方便對學生的了解;通過評價讓學生對自己的學習也做到心中有數(shù)。

至此,估計學生基本能夠掌握定理,達到預定目標,這時,利用提問形式,師生共同進行小結(jié)。五、幾點說明1、板書設計:為了使本節(jié)課更具理論性、邏輯性,我將板書設計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設計要突出的特色:為了給學生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學課程標準下的基本理念和總體目標為指導思想,在教學過程中始終面向全體學生,依據(jù)學生的實際水平,選擇適當?shù)慕虒W起點和教學方法,充分讓學生參與教學,在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學生都有所得,我注意前后知識的鏈接,進行各學科間的整合,為學生提供了廣闊的思考空間,同時讓學生利用所學知識解決實際問題,感受理論聯(lián)系實際的思想方法。

(三)解釋、應用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學生觀察、思考、建模、自行解決(3) 學生間討論交流后,教師展示部分學生的解答過程(重點關(guān)注:1.學生能否發(fā)現(xiàn)解決問題的途徑;學生在引導下,能否借助方程或方程組來解決問題;學生的自學能力.2.關(guān)注學生克服困難的勇氣和堅強的意志力。3.繼續(xù)關(guān)注學生中出現(xiàn)的典型錯誤。)(設計意圖: 讓學生進一步熟悉如何將實際問題轉(zhuǎn)化成數(shù)學模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學生的應用意識和應用能力。

解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系

2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.

3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).

【教學目標】(一)教學知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究

解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應用

1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.

變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標等)是解決問題的關(guān)鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。