
二、 教學目標1.理解分數(shù)加減法的算理,掌握分數(shù)加減法的計算方法,并能正確地計算出結(jié)果。2.理解整數(shù)加法的運算定律對分數(shù)加法仍然適用,并會運用這些運算定律進行一些分數(shù)加法的簡便運算,進一步提高簡算能力。 3.體會分數(shù)加減運算在生活、生產(chǎn)中的廣泛應(yīng)用。三、學情分析五年級的學生已有一定的生活經(jīng)驗,對數(shù)學的神秘感有了更強的好奇心。因此,結(jié)合分數(shù)加減的學習內(nèi)容適當補充一些數(shù)學史料,可使學生的好奇轉(zhuǎn)化為探究欲,促其學習數(shù)學興趣的提高,并逐步形成良好的探究習慣。因此,教學時,應(yīng)重視教材提供的兩個涉及數(shù)學文化的閱讀材料的學習。在此基礎(chǔ)上,再補充一些相關(guān)的學習材料。四、教學重點、難點重點:分數(shù)加減法的計算方法難點:引導學生體會理解不同算法的思路。

教學目標:1.讓學生自主探索小數(shù)加、減法的計算方法,理解計算的算理并能正確地進行加、減運算及混合運算。2.使學生理解整數(shù)運算定律對于小數(shù)同樣適用,并會運用這些定律進行一些小數(shù)的簡便計算,進一步發(fā)展學生的數(shù)感。3.使學生體會小數(shù)加、減運算在生活、學習中的廣泛應(yīng)用,提高小數(shù)加、減計算能力的自覺性。教學重難點:(一)理解小數(shù)加、減法的算理,掌握其計算法則是教學重點.(二)位數(shù)不同的小數(shù)加、減法計算,是學習的難點.第一課時教學目標:1、讓學生生自主探索小數(shù)的加、減法的計算方法,理解計算的算理并能正確地進行加、減及混合運算。2、使學生體會小數(shù)加減運算在生活、學習中的廣泛應(yīng)用,體會數(shù)學的工具性作用。3、激發(fā)學生學習小數(shù)加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。

1.舉例說明什么時候用普查的方式獲得數(shù)據(jù)較好,什么時候用抽樣調(diào)查的方式獲得數(shù)據(jù)較好?2、下列調(diào)查中分別采用了那些調(diào)查方式?⑴為了了解你們班同學的身高,對全班同學進行調(diào)查.⑵為了了解你們學校學生對新教材的喜好情況,對所有學號是5的倍數(shù)的同學進行調(diào)查。3、說明在以下問題中,總體、個體、樣本各指什么?⑴為了考察一個學校的學生參加課外體育活動的情況,調(diào)查了其中20名學生每天參加課外體育活動的時間.⑵為了了解一批電池的壽命,從中抽取10只進行實驗。⑶為了考察某公園一年中每天進園的人數(shù),在其中的30天里對進園的人數(shù)進行了統(tǒng)計。通過本節(jié)課的學習,同學們有什么收獲和疑問?1、基本概念:⑴.調(diào)查、普查、抽樣調(diào)查.⑵.總體、個體、樣本.2、何時采用普查、何時采用抽樣調(diào)查,各有什么優(yōu)缺點?

1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計意圖】運用小組合作交流的方式,既培養(yǎng)了學生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學習比較吃力的同學也能參與到學習中來,體現(xiàn)了學生是學習的主體。

方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;

判斷下面抽樣調(diào)查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質(zhì)量情況,先隨機抽取若干箱(捆),再在抽取的每箱(捆)中,隨機抽取1~2瓶檢查;(2)通過網(wǎng)上問卷調(diào)查方式,了解百姓對央視春節(jié)晚會的評價;(3)調(diào)查某市中小學生學習負擔的狀況,在該市每所小學的每個班級選取一名學生,進行問卷調(diào)查;(4)教育部為了調(diào)查中小學亂收費情況,調(diào)查了某市所有中小學生.解析:本題應(yīng)看樣本是否為簡單隨機樣本,是否具有代表性.解:(1)合適,這是一種隨機抽樣的方法,樣本為簡單隨機樣本.(2)不合適,我國農(nóng)村人口眾多,多數(shù)農(nóng)民是不上網(wǎng)的,所以調(diào)查的對象在總體中不具有代表性.(3)不合適,選取的樣本中個體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應(yīng)在全國范圍內(nèi)分層選取樣本,除了上述原因外,每班的學生全部作為樣本是沒有必要的.

解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖是解題的關(guān)鍵.三、板書設(shè)計1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過一段對話設(shè)置疑問,巧設(shè)懸念,激發(fā)起學生獲取知識的求知欲,充分調(diào)動學生學習的積極性,使學生由被動接受知識轉(zhuǎn)為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內(nèi)角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內(nèi)角和是180°這一結(jié)論

證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.

故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應(yīng)進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個數(shù)成比例,則應(yīng)滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.

(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實際中的應(yīng)用.(二)能 力訓練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應(yīng)用意識.●教學重點1.相似三角形的周長比、面積比與相似比關(guān)系的推導.2.運用相似三角形的比例關(guān)系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關(guān)系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應(yīng)用意識.

解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應(yīng)用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.

解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.

四、全課總結(jié)[設(shè)計意圖:通過電教媒體把抽象的數(shù)學知識與學生的心理和生活中喜歡做游戲的特點結(jié)合起來,使學生在樂中學,在玩中學,有利于學生對知識的理解和掌握。]教學反思:根據(jù)學生年齡小、活潑好動的特點,我在教學中力求激發(fā)學生學習的積極性、主動性,使學生在愉悅和諧的課堂氣氛中獲取新知,并培養(yǎng)了學生的多種能力。第十五課時: 生活中的數(shù)教學內(nèi)容:教科書第46頁、第57頁、第87頁“生活中的數(shù)”。教材分析:本節(jié)課教師通過課件演示,創(chuàng)設(shè)生活情境,在現(xiàn)實世界中尋找生活素材,成功地將學生的視野拓寬到他們熟悉的生活空間。然后通過說一說、擺一擺、猜一猜、算一算等實踐活動,讓學生感覺到數(shù)學就在他們身邊,看得見、摸得著。學生自始至終地參與觀察、操作、猜測、驗證、思考等多種實踐活動,積極性非常高??梢哉f,我在圍繞“數(shù)與生活”這一中心設(shè)計教學活動時,也在積極地進行構(gòu)建“生活數(shù)學”教學體系的探索與嘗試。

1.讓學生拿出長方體摸一摸,問:你有什么感覺?摸的的面是什么形狀?師:誰來摸一摸,老師手上長方體的長方形在哪?(學生找出長方形)2.讓學生在自己的學具(長方體、正方體、圓柱體)上找圖形,并和小組里的同學說一說。3、指名說,教師把學生找到的圖形從立體圖形上分離出來,貼于黑板上,師:這些圖形是物體上的一個面,這就是我們今天要認識的圖形。(板書課題——認識平面圖形)4.讓學生說說:從什么物體上找到了什么圖形?5.師:你能想辦法把這些形狀畫到一張紙上嗎?請學生演示各自不同的方法,然后教師在黑板上沿長方體的一個面畫出長方形。師:你會畫嗎?請小朋友們用自己喜歡的辦法畫出并剪出長方形、正方形、圓和三角形各2個。

3.小結(jié)。引導學生歸納兩位數(shù)加減法的口算步驟:要把加上或減去的兩位數(shù)看成一個整十數(shù)和一個一位數(shù),先算兩位數(shù)加、減整十數(shù),再算兩位數(shù)加減一位數(shù)。三、鞏固練習課本第93頁的做一做。分別指名口算,并說說怎么想的。四、全課總結(jié)1.根據(jù)學生回答,教師歸納小結(jié)并出示課題:口算兩位數(shù)加、減兩位數(shù)。2.口算兩位數(shù)加、減兩位數(shù)應(yīng)注意什么?五、布置作業(yè)教后反思《標準》提倡算法多樣化,目的是提倡學生個性化的學習。本單元仍然注意體現(xiàn)這一理念,如本課時教學口算兩位數(shù)加、減兩位數(shù)時,既呈現(xiàn)了口算方法,還出現(xiàn)了在腦中想豎式的方法;在教學筆算時,還出現(xiàn)口算的方法。其目的就是鼓勵學生展開思路,在交流、比較的基礎(chǔ)上不斷地完善自己的想法,學習計算方法。

一、談話引入,激發(fā)學生學習興趣師:六一快到了,很多小朋友都想了很多的方式來慶祝,有的小朋友想去公園,有的小朋友想用自己攢的零花錢去買玩具呢,我們也和他們一起去看看吧!(電腦出示玩具店的貨架和玩具的標價。)二、自主探索,提出問題。1、仔細看圖,提出問題師:看貨架上都有哪些玩具?你喜歡什么玩具?你從圖上知道了哪些信息?(觀察后指名回答。)課件出示:兩個小朋友的對話師:貨架下的兩個小朋友在說什么?你知道了什么信息?(指明生說出題意)師:怎樣才知道左邊的小朋友買大象玩具后還剩多少元?右邊的小朋友還差多少元呢?(用減法算)師:你知道這么列式嗎?(師根據(jù)生回答板書算式)師:大家會算上面的算式嗎?先在小組里擺一擺,算一算。2、分組操作,形成思維。學生擺小棒,教師巡回指導學生操作。3、信息反饋,抽象算法。師:大家擺出了上面兩道題的得數(shù)嗎?誰來說一說是怎樣擺的?

●教學內(nèi)容:教科書第27頁的內(nèi)容。●教學目標:①通過創(chuàng)設(shè)具體的情境,使學生初步學會加法的驗算,并通過加法驗算方法的交流、讓學生體會算法的多樣化。②培養(yǎng)學生探索合作交流的意識和能力。③讓學生用所學到的驗算知識去解決生活中的問題,體會用數(shù)學的樂趣。●教具準備:老師準備掛圖或課件?!窠虒W過程:創(chuàng)設(shè)情境、導入新課。師:同學們,你們與爸爸、媽媽去超市買過東西嗎?生:互相說說,再請同學發(fā)表意見。師:(掛圖1)我們來看掛圖,小明和媽媽去超市買東西,從圖1中你看到了什么?生1:從圖1中我看到了小明媽媽買了一套135元的運動服和一雙48元的運動鞋。生2:從圖1中我看到小明媽媽給了售貨員200元。生3:要知道一套運動服和一雙運動鞋一共要多少元?應(yīng)用加法計算。師:全班動手計算。板書:135+48=183(元)
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。