
正方體的體積=棱長×棱長×棱長用字母a表示棱長,V=a×a×a.也可以寫成a3讀作a的立方.表示3個a相乘.不要誤認為a與3相乘。寫a3時3寫在a的右上角要寫小些.所以正方體的體積公式一般寫成: V=a3(五)、鞏固練習、運用公式練習是數(shù)學中教學鞏固新知、形成技能、發(fā)展思維、提高學生分析問題、解決問題能力的有效手段,為了加強學生的理解,使學生能正確運用公式.我設計了多層次的練習。1、通過讓學生完成看圖求體積,這樣有助于學生理解長方體正方體的體積與它的長寬高的關系,記住長方體的體積計算公式.2、我對安排了四個判斷題,以加深學生對a的立方的理解和運用。3,解決實際問題,我安排了兩道題目的是讓學生所學新知識解決生活中的一些實際問題。

一、說教材“正比例和反比例的意義”這部分內容著重使學生理解正反比例的意義。正、反比例關系是比較重要的一種數(shù)量關系,學生理解并掌握了這種數(shù)量關系,可以應用它解決一些簡單的正、反比例方面的實際問題。二、說教學目標1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯(lián)的量是否成比例,成什么比例.2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.三、說教學重點理解正反比例的意義,掌握正反比例的變化的規(guī)律.四、說教學難點理解正反比例的意義,掌握正反比例的變化的規(guī)律.五、說學情在教學了正比例知識后,大部分學生都明白了如何判斷兩個量是不是正比例,在做題時,學生出錯的可能性不大,主要在于語言表達的完整性和科學性上??墒且坏┙淌诹朔幢壤闹R之后,學生開始混淆兩者了!不知道是把兩個量相“乘”還是相“除”!這是由于學生對于“正”和 “反”的理解不夠到位。

教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25

1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設計意圖】運用小組合作交流的方式,既培養(yǎng)了學生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學習比較吃力的同學也能參與到學習中來,體現(xiàn)了學生是學習的主體。

方法總結:在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結:過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應的比去乘360°即可求出相應扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;

故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據(jù)線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.

●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經(jīng)歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉的性質的運用如圖,點E是正方形ABCD內一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉性質知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉的概念將一個圖形繞一個頂點按照某個方向轉動一個角度,這樣的圖形運動稱為旋轉.2.旋轉的性質一個圖形和它經(jīng)過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等于旋轉角,對應線段相等,對應角相等.

(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.

解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

2啟發(fā)幼兒的肢體意識和肢體動作,更重要的是過程 1師:"今天我給小朋友將個故事好不好,我來告訴你們啊,這個故事啊,發(fā)生在一個大森林里,你們先告訴我,你們知道森林里面什么特別多嗎?" 兒:"樹多............"模仿訓練 師"哪個小朋友想來裝扮一下森林里特別多的東西??"誰愿意來試一下" 兒"老虎" 師"老虎什么樣子,我們來看看**做的像不像 師:"可以來做一下樹是什么樣子的" 幼兒做動作。故事:森林里住了兩個巫婆,一個是跳跳巫婆,一個是奇奇巫婆,跳跳巫婆啊,整天都喜歡跳來跳去的,他高興的時候跳,不高興的時候也在跳,那奇奇巫婆呢,整天都喜歡問為什么,有一天呢,奇奇巫婆和跳跳巫婆他們一起在森林里面去玩,他們就發(fā)現(xiàn)前面的樹上張了好多好多紅色的果子,他們就過去你一口我一口的吃了起來(教師做動作)吃著吃著啊,你們知道發(fā)生什么事了嗎?他這個果子的名字就叫愛睡果,他們吃完以后就睡著了,睡了好久好久,睡了好幾年,后來啊,有一天,突然他們聽到了一陣特別吵的聲音,把他們從睡夢中吵醒了,你們知道是什么聲音嗎?特別特別亂,我們一起來做一做特別特別亂的聲音(幼兒根教師一起想象亂的聲音)啟發(fā)幼兒想象自己的身體都能發(fā)出什么聲音,你們知道為什么這么亂嗎?因為啊,森林里面要開音樂會了好多的小朋友還有小動物都來參加音樂會,小朋友們正在做蛋糕呢,我們一起去做蛋糕好不好?來,我們一起來做蛋糕音樂律動"做面包"音樂<森林音樂會> 師生一起先摘果子,比一比誰摘的果子多 擠牛奶,切蛋糕,刷果醬,攪拌牛奶, 攪面,跺面,跳一跳學拍"強弱弱弱.

活動過程: 一、認識煤氣灶、煤氣包,了解煤氣的用處 1、 出示煤氣灶和煤氣包,提問:這是什么?你們家使用煤氣嗎?你們家的煤氣是從哪里來的?煤氣有什么用? 2、 教師進行簡單的小結:我們家用的煤氣有兩種,一種是管道煤氣,一種是煤氣包。 它們給我們帶來了許多方便,能燒水、燒飯、燒菜┄┄ 二、觀看錄象,了解煤氣的危險性。 1. 教師:煤氣的用處很多,可是如果不正確的使用煤氣,煤氣也會給我們帶來許多危害。

師:這是一種較為簡便、應用廣泛的方法,但有時候也要具體問題具體分析,做題時要合理靈活地選擇計算方法?!堆芯繉W生如何學比研究教師如何教更重要。學生對新知識的學習必須以已有的知識和學習經(jīng)驗作為基礎,因此正確分析學生的知識基礎和學習經(jīng)驗就顯得格外重要。我認為分數(shù)除以整數(shù)的教學基礎在于以下幾點:分數(shù)與小數(shù)的轉化;分數(shù)的意義;分數(shù)乘法的意義;倒數(shù)的知識;商不變的性質等。這些知識在以前的學習中,學都有了足夠的掌握。有了上面的分析基礎,我覺得把研究新知識的權力教給學生,是完全可以的。》4、質疑與反思。師:對于這些方法,盡管大家的思維角度不盡相同,但是基本的想法是相同的,想一想我們是怎樣解決問題的?生:用學過的倒數(shù)、商不變的性質解決的。師:對。用一句話概括就是運用舊知識解決新新問題。這是一種很重要的學習方法。5、實踐體驗練習鞏固。

一.說教材。我說課的內容是人教版課程標準實驗教科書六年級上冊的分數(shù)除法單元中的例1和例2。例1是分數(shù)除法的意義認識,例2是分數(shù)除以整數(shù)的計算。在這之前學生已經(jīng)掌握了整數(shù)除法的意義和分數(shù)乘法的意義及計算,而本課的學習將為統(tǒng)一分數(shù)除法計算法則打下基礎。例1先是整數(shù)除法回顧,再由100克=1/10千克,從而引出分數(shù)除法算式,通過類比使學生認識到分數(shù)除法的意義與整數(shù)除法的意義相同,都是‘已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算’。例2是分數(shù)除以整數(shù)的計算教學,意在通過讓學生進行折紙實驗、驗證,引導學生將‘圖’和‘式’進行對照分析,從而發(fā)現(xiàn)算法,感悟算理,同時也初步感受數(shù)形結合的思想方法。根據(jù)剛才對教材的理解,本節(jié)課的教學目標是:1、理解分數(shù)除法的意義與整數(shù)除法的意義相同。2.理解分數(shù)除以整數(shù)的計算原理,掌握計算方法,并能正確的進行計算。

2、幼兒的動手、分辨能力,發(fā)展幼兒思維的靈活性?;顒訙蕚洌簬缀螆D形掛件一人一個,數(shù)字卡片,演示教具,魔術卡每人一張活動過程:一、帶幼兒進知識宮,激發(fā)幼兒的興趣。師:今天老師要帶小朋友到知識宮去玩。在知識宮,老師要給小朋友好多禮物,但這些禮物一定要小朋友動腦筋才能夠得到。第一份禮物需根據(jù)自己掛著的圖形和圖形上的數(shù)字找座位,找到了,這個圖形就作為第一份禮物送給你們。

[設計意圖:鞏固減法的意義,培養(yǎng)學生初步的思維能力。](2)組織學生自己先算一算,教師巡視,捕捉學生學習信息,糾正不良學習習慣。[設計意圖:通過巡視,及時捕捉學生的學習信息,發(fā)現(xiàn)問題及時解決;把培養(yǎng)學生良好的計算習慣、審題習慣及檢查習慣落到實處。](3)組織學生全班交流計算方法。組織學生在全班交流解決計算“32-2=”的方法,引導學生理解“32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”。如果學生用其他的方法來計算,只要正確,也要肯定。[設計意圖:同前面一樣,鞏固數(shù)的組成,訓練每一個學生“述說整十數(shù)加一位數(shù)相應減法的計算過程”,突破難點。]3.加減法對比組織學生比較“30+2=32”和“32-2=30”,并說一說有什么發(fā)現(xiàn),使學生認識到“3個十和2個一組成32,所以30加2等于32;反過來,32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”[設計意圖:強化加減法意義的聯(lián)系,培養(yǎng)學生初步的思維能力。]

在游戲中鞏固知識,并體會區(qū)間套的數(shù)學思想,有利于培養(yǎng)學生的數(shù)感。做游戲時間不能過長,我只安排在4分鐘內完成,讓學生在學中樂和樂中學的興趣?!此摹等n總結今天這節(jié)課你們學了什么知識?有哪些收獲?(讓學生進行互說來結束本節(jié)課)五、說板書板書是體現(xiàn)課文內容脈落的載體。通過板書學生可以一目了然地弄請本節(jié)課你所授的內容知識的過程,讓人永久深記,印象深刻。我的板書設計如下:一個數(shù)的因數(shù)和倍數(shù)的求法例1、18的因數(shù)有哪幾個?18的因數(shù)有:1、2、3、6、9、18一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小是1,最大的因數(shù)是它本身。方法:①哪兩個自然數(shù)積等于18,則哪兩個自然數(shù)就是這個數(shù)的因數(shù)。②哪個數(shù)能整除18,則哪個數(shù)就是這個數(shù)的因數(shù)。例2、2的倍數(shù)有哪些?一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。方法:用2與所有的自然數(shù)相乘,積就是它的倍數(shù)。

2、初步學習按詩歌的結構仿編詩歌。 準備: 圖片。 過程:一、游戲:大樹和小鳥。——教師扮演大樹,幼兒扮演一群小鳥。引導幼兒在大樹周圍做各種動作,如親親大樹、摸摸大樹、在大樹旁跳舞、為大樹捉蟲等?!髽浜托▲B在一起開心嗎?有一首詩歌講的就是“大樹和小鳥”的事情。

2、引導幼兒創(chuàng)編不同的雨點落下時的動作情態(tài),小花喝水時快樂滿足的情感表小雨與花兒共舞的歡樂場面。 3、引導幼兒學會二人合作表演動作,根據(jù)情節(jié)及時調整自己的動作、身體姿勢的能力。 活動準備: 1、教學磁帶、錄音機 2、花環(huán)。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。