
②.通過“由文字語言到符號(hào)語言”再“由符號(hào)語言到文字語言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點(diǎn)策略:①.分三步分散難點(diǎn):引入時(shí)大量的實(shí)際情景,讓學(xué)生體會(huì)到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡單代數(shù)式賦予實(shí)際意義,進(jìn)一步體會(huì)代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實(shí)際問題的能力.②.適時(shí)安排小組合作與交流,使學(xué)生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計(jì)為學(xué)生精彩的生成提供了很好的平臺(tái),在實(shí)際教學(xué)過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點(diǎn),及時(shí)進(jìn)行引導(dǎo)和激勵(lì),并根據(jù)具體教學(xué)對(duì)象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過程真正成為生成教育智慧和增強(qiáng)實(shí)踐能力的過程.讓預(yù)設(shè)與生成齊飛.

(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過規(guī)定A千瓦時(shí),則超過部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況

易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

三、課堂檢測:(一)、判斷題(是一無二次方程的在括號(hào)內(nèi)劃“√”,不是一元二次方程的,在括號(hào)內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項(xiàng)是__________,一次項(xiàng)是__________,常數(shù)項(xiàng)是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程,當(dāng)m__________時(shí),是一元一次方程。四、學(xué)習(xí)體會(huì):五、課后作業(yè)

證明:如圖,過點(diǎn)C作CF∥PD交AB于點(diǎn)F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時(shí),如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實(shí)以及推論得到相關(guān)比例式.如果圖中沒有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實(shí)及其推論得到相關(guān)比例式.三、板書設(shè)計(jì)平行線分線段成比例基本事實(shí):兩條直線被一組平行線所截, 所得的對(duì)應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對(duì)應(yīng)線段成比例通過教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個(gè)復(fù)雜的圖形分成幾個(gè)基本圖形,通過應(yīng)用鍛煉識(shí)圖能力和推理論證能力.在探索過程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)探索結(jié)論的方法和過程,發(fā)展學(xué)生的合情推理能力和有條理的說理表達(dá)能力.

①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡便.三、板書設(shè)計(jì)

解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實(shí)際需求,注明自變量的取值范圍.三、板書設(shè)計(jì)一元二次方程概念:只含有一個(gè)未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項(xiàng)、一次項(xiàng)和 常數(shù)項(xiàng),a,b分別稱為二次 項(xiàng)系數(shù)和一次項(xiàng)系數(shù)本課通過豐富的實(shí)例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會(huì)方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會(huì)一元二次方程也是刻畫現(xiàn)實(shí)世界的一個(gè)有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辯證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過規(guī)定A千瓦時(shí),則超過部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況

故直線l2對(duì)應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫出直線l1,l2的圖象如圖,可知點(diǎn)A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識(shí),又不局限于基本知識(shí).三、板書設(shè)計(jì)利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會(huì)知識(shí)之間的普遍聯(lián)系和知識(shí)之間的相互轉(zhuǎn)化.通過對(duì)本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識(shí)圖能力以及語言表達(dá)能力.

答:書包單價(jià)92元,隨身聽單價(jià)360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價(jià)92元,隨身聽單價(jià)360元。2)在人民商場購買隨聲聽與書包各一樣需花費(fèi)現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因?yàn)?62<400,所以也可以選擇在家樂福購買。因?yàn)?62>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補(bǔ)充和強(qiáng)調(diào)。)

因?yàn)閤3表示手機(jī)部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場共有兩種進(jìn)貨方案.方案1:購甲型號(hào)手機(jī)30部,乙型號(hào)手機(jī)10部;方案2:購甲型號(hào)手機(jī)20部,丙型號(hào)手機(jī)20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時(shí),要注意不同型號(hào)的手機(jī)數(shù)量和單價(jià)要對(duì)應(yīng).三、板書設(shè)計(jì)增收節(jié)支問題分析解決列二元一次方程,組解決實(shí)際問題)增長率問題利潤問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價(jià)值,逐步形成運(yùn)用數(shù)學(xué)的意識(shí);并且通過對(duì)問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟(jì)意識(shí),增強(qiáng)他們的節(jié)約和有效合理利用資源的意識(shí).

1.要?jiǎng)?chuàng)造性的使用教材,不拘泥于教材的形式。教材為學(xué)生的學(xué)習(xí)活動(dòng)提供了基本線索,實(shí)施新課程目標(biāo)、實(shí)施教學(xué)的重要資源。在教學(xué)中要?jiǎng)?chuàng)造性地使用教材。本節(jié)課教師通過具體的現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn),讓學(xué)生體驗(yàn)到數(shù)學(xué)來源于生活,打破了傳統(tǒng)的注入式的教學(xué)模式,通過一系列精心設(shè)計(jì)把它改成學(xué)生所經(jīng)歷的情境引入課題,激發(fā)了學(xué)生的學(xué)習(xí)興趣。在教學(xué)中引導(dǎo)學(xué)生進(jìn)行“猜想一實(shí)驗(yàn)一分析一交流一發(fā)現(xiàn)一應(yīng)用”, 學(xué)生在操作、思考、交流中不斷地發(fā)現(xiàn)問題,解決問題,極大地調(diào)動(dòng)了學(xué)生的學(xué)習(xí)的積極性,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花,經(jīng)歷了一番前人發(fā)現(xiàn)這個(gè)結(jié)果的“濃縮”過程,從而培養(yǎng)了學(xué)生獨(dú)立探究和解決問題的能力。2. 相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)通過課堂上小組合作擲硬幣試驗(yàn)、并展示試驗(yàn)結(jié)果的過程,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中更利于教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解,以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。

(1)上午9時(shí)的溫度是多少?12時(shí)呢?(2)這一天的最高溫度是多少?是在幾時(shí)達(dá)到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時(shí)間?(4)在什么時(shí)間范圍內(nèi)溫度在上升?在什么時(shí)間范圍內(nèi)溫度在下降?(5)圖中的A點(diǎn)表示的是什么?B點(diǎn)呢?(6)你能預(yù)測次日凌晨1時(shí)的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時(shí)間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當(dāng)體溫達(dá)到40℃時(shí),駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時(shí),駱駝的體溫達(dá)到最低點(diǎn).3、如下圖,是駱駝的體溫隨時(shí)間變化而變化的的關(guān)系圖,據(jù)圖回答下列問題:

一.情境引入:師:我們生活在一個(gè)變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學(xué)哈哈大笑)師: 你這個(gè)變化中有幾個(gè)量在變化?生3:兩個(gè),一個(gè)是喝的口數(shù),一個(gè)是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙?jiān)剿涸叫。ù藭r(shí)該同學(xué)順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學(xué)們點(diǎn)頭稱是)師: 你這個(gè)變化中又有幾個(gè)量?它們又是怎么變化的?生4:兩個(gè),一個(gè)是撕的次數(shù),另一個(gè)是紙的大?。畮煟耗敲茨膫€(gè)量隨哪個(gè)量的變化而變化的呢?

[設(shè)計(jì)意圖]節(jié)環(huán)節(jié)的設(shè)置是為了使學(xué)生在掌握不等式性質(zhì)的基礎(chǔ)之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學(xué)生需求,更能滿足學(xué)有余力的學(xué)生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結(jié)合的思想,學(xué)生通過參與活動(dòng),體會(huì)挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識(shí)給他們帶來的快感中完成本節(jié)課的學(xué)習(xí),(六)課堂小結(jié)最后,凱旋歸來話收獲:通過本節(jié)課的學(xué)習(xí),你收獲到了什么?學(xué)生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學(xué)會(huì)了不等式的三條基本性質(zhì)2、學(xué)會(huì)了用字母來表示不等式的性質(zhì)3、學(xué)生不等式與等式的區(qū)別等等;學(xué)生在回答的時(shí)候,老師加以評(píng)價(jià)和表揚(yáng)并展示主要內(nèi)容;這里教師要再次強(qiáng)調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向要改變,數(shù)學(xué)思想的方法是數(shù)學(xué)的靈魂,這節(jié)課我們體驗(yàn)了三種數(shù)學(xué)思想,一是類比的思想,二是數(shù)形結(jié)合的思想,三是分類討論的思想,

說明:8.2.1在表示范表演的點(diǎn)畫空心圓圈,表不包括這一點(diǎn),表示大時(shí)就往右拐;圖8.2.2在表示-2的點(diǎn)畫黑點(diǎn)表示包括這一點(diǎn),表示小時(shí)往左拐。3,講解補(bǔ)充例題,例1:判斷:①x=2是不等式4x<9的一個(gè)解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設(shè)計(jì)意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點(diǎn))4.鞏固練習(xí):課本44頁練習(xí)2,3題5.歸納總結(jié),結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點(diǎn)知識(shí)和學(xué)習(xí)方法,達(dá)到掌握重點(diǎn),順理成章的目的。6.作業(yè):課本49頁習(xí)題1,2題

一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實(shí)際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點(diǎn)一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點(diǎn)。可是說不等式的基本性質(zhì)這個(gè)概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點(diǎn)。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)和生活實(shí)際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會(huì)“從實(shí)際問題中抽象出數(shù)學(xué)模型,并回到實(shí)際問題中解釋和檢驗(yàn)”的過程。注重“概念的實(shí)際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實(shí)際問題中,在已有的學(xué)習(xí)經(jīng)驗(yàn)的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗(yàn)證”的探索過程,體會(huì)“轉(zhuǎn)化”的思想方法,體會(huì)數(shù)學(xué)的價(jià)值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運(yùn)用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點(diǎn)。

課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時(shí)數(shù)2授課班級(jí) 授課時(shí)間 教學(xué)地點(diǎn) 背景分析正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動(dòng)過的,目的就在于幫助學(xué)生對(duì)這一知識(shí)的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識(shí)目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 1 會(huì)用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會(huì)用基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。