提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中數(shù)學七年級上冊用計算器計算說課稿

  • 北師大初中九年級數(shù)學下冊垂徑定理教案

    北師大初中九年級數(shù)學下冊垂徑定理教案

    方法總結:垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結:解題的關鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.

  • 北師大初中九年級數(shù)學下冊圓教案

    北師大初中九年級數(shù)學下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 北師大初中九年級數(shù)學下冊圓的對稱性教案

    北師大初中九年級數(shù)學下冊圓的對稱性教案

    我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.

  • 北師大初中九年級數(shù)學下冊正切與坡度2教案

    北師大初中九年級數(shù)學下冊正切與坡度2教案

    教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

  • 北師大初中九年級數(shù)學下冊正弦與余弦2教案

    北師大初中九年級數(shù)學下冊正弦與余弦2教案

    [教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.

  • 北師大初中九年級數(shù)學下冊切線長定理教案

    北師大初中九年級數(shù)學下冊切線長定理教案

    (3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

  • 小學數(shù)學人教版三年級上冊《時間的計算》說課稿

    小學數(shù)學人教版三年級上冊《時間的計算》說課稿

    一、說課標《數(shù)學課程標準》明確指出:數(shù)學教學要緊密聯(lián)系學生的生活實際,從學生的生活經(jīng)驗和已有知識出發(fā),創(chuàng)設生動有趣的情境,引導學生開展觀察、操作??交流等活動,使學生通過數(shù)學活動,掌握基本的數(shù)學知識和技能。所以我把“加強生活體驗,注重學生發(fā)展”確定為本節(jié)課的教學理念。二、說教材:1、教學內容在知識體系中的地位 時間的計算這一內容是在學生認識了時、分、秒的基礎上教學的。學生學習一些有關時間的簡單計算,可以加深對時間單位實際大小的認識,培養(yǎng)時間觀念。2、本課時的教學目標 通過教學使學生能掌握時間換算的方法,正確地進行時間單位之間的換算;通過教學使學生學會計算兩個時刻之間經(jīng)過的時間;養(yǎng)成遵守時間,愛惜時間的意識和習慣。3、本課教學的重點:計算間隔不超過1小時的兩個時刻之間經(jīng)過的時間。 難點:開始和結束的時刻及經(jīng)過的時間三者之間的關系。知識生長點:讓學生在認識了時、分、秒及時間單位的進率的基礎上進一步學習時間單位的簡單換算,和經(jīng)過時間的計算。

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題2教案

    北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題2教案

    四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程1教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程1教案

    探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.

  • 北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題1教案

    北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題1教案

    ∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數(shù),有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數(shù)式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數(shù)學應用意識和能力.

  • 北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程1教案

    北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程1教案

    探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

  • 北師大初中數(shù)學九年級上冊利用兩邊及夾角判定三角形相似2教案

    北師大初中數(shù)學九年級上冊利用兩邊及夾角判定三角形相似2教案

    一、教學目標1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學結論的過程;通過畫圖、度量等操作,培養(yǎng)學生獲得數(shù)學猜想的經(jīng)驗,激發(fā)學生探索知識的興趣,體驗數(shù)學活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習2就是通過讓學生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.

  • 北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    (1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大版初中七年級數(shù)學下冊用尺規(guī)作角說課稿

    北師大版初中七年級數(shù)學下冊用尺規(guī)作角說課稿

    活動目的:通過兩個圖案設計,一個是讓學生獨立思考,借助于已經(jīng)學習的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進一步鞏固應用;另一個是讓學生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進一步培養(yǎng)學生幾何語言表達能力,并積累尺規(guī)作圖的活動經(jīng)驗。活動注意事項:根據(jù)課堂時間安排,可靈活進行處理,既可以作為本節(jié)課的實際應用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學生都學到有價值的數(shù)學。四、 教學設計反思1.利用現(xiàn)實情景引入新課,既能體現(xiàn)數(shù)學知識與客觀世界的良好結合,又能喚起學生的求知欲望和探求意識。而在了解基礎知識以后,將其進行一定的升華,也能使學生明白學以致用的道理、體會知識的漸進發(fā)展過程,增強思維能力的培養(yǎng)。同時,在整個探究過程中,怎樣團結協(xié)作、如何共同尋找解題的突破口,也是學生逐步提高的一個途徑。

  • 北師大版初中八年級數(shù)學上冊中位數(shù)與眾數(shù)說課稿

    北師大版初中八年級數(shù)學上冊中位數(shù)與眾數(shù)說課稿

    通過活動讓學生思考:回答問題。對學生的不同回答,只要合理,就給以認可。設計意圖:讓學生學會有條理的表述自己的思考過程,理解三種數(shù)據(jù)都是刻畫了一組數(shù)據(jù)的平均水平。整個授課的過程中,由于問題的難點進行了分解突破,問題的解決水到渠成。同時要學生意識到:學會用數(shù)據(jù)說話,科學地分析身邊的事例。5.歸納小結,鞏固提高。(1)列表對比平均數(shù)眾數(shù)中位數(shù)概念注意點(2)在生活中可用平均數(shù)、眾數(shù)和中位數(shù)這三個特征數(shù)來描述一組數(shù)據(jù)的集中趨勢,它們各有不同的側重點,需聯(lián)系實際進行選擇,對于同一份材料,同一組數(shù)據(jù),不同的目的,應選擇不同的數(shù)據(jù)代表。因從不同的角度進行分析時,看到的結果可能是截然不同的。作為信息的接受者,分析數(shù)據(jù)應該從多角度對統(tǒng)計數(shù)據(jù)作出較全面的分析,從而避免機械的,片面的解釋。

  • 北師大版初中八年級數(shù)學上冊一次函數(shù)的圖象說課稿

    北師大版初中八年級數(shù)學上冊一次函數(shù)的圖象說課稿

    [互動2]師:請大家從上面的解題經(jīng)歷中,總結一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設函數(shù)表達式;第三步:根據(jù)表達式列等式,若是正比例函數(shù),只要找圖象上一個點的坐標就可以了;若是一次函數(shù),則需要找到圖象上兩個點的坐標,然后把點的坐標分別代入所設的解析式中,組成關于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達式需要幾個條件?確定一次函數(shù)的表達式呢?要說明理由。生:確定正比例函數(shù)需要一個條件,而確定一次函數(shù)需要兩個條件。原因是正比例函數(shù)的表達式:y=Rx(R≠0)中,只有一個系數(shù)R,而一次函數(shù)的表達式y(tǒng)=Rx+b(R≠0)中,有兩個系數(shù)(待定)R和b。

  • 北師大版初中八年級數(shù)學上冊確定一次函數(shù)表達式說課稿

    北師大版初中八年級數(shù)學上冊確定一次函數(shù)表達式說課稿

    ③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導學生總結學習體會,教給學生掌握“從特殊到一般”的認識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關系式的一般式的求法,以此突破教學難點。在學習過程中,我巡視并予以個別指導,關注學生的個體發(fā)展。經(jīng)學生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學效果課前:通過本節(jié)課的學習,教學目標應該可以基本達成,學生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達式,且通過本節(jié)課的學習學生的抽象思維能力,數(shù)學應用能力都能有所提升,

上一頁123...101112131415161718192021下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。