
二、說教材的三維目標和重難點1、知識目標:進一步熟悉面積單位的大小,掌握相鄰面積間的進率是100,會進行簡單的換算。2、能力目標:培養(yǎng)學生觀察、比較、抽象、概括、判斷、推理能力及空間觀念。3、情感目標:培養(yǎng)學生生生合作的學習精神,樂于助人的集體精神。重點:掌握相鄰面積間的進率是100。難點:掌握相鄰面積間的進率是100。三、說設計意圖對于這節(jié)課的教學設計,我們組的教師們嘗試從不同的角度去理解教材,先后嘗試了多種不同的教學設計,下面僅結合課堂教學中的三大環(huán)節(jié)(開課、活動操作、練習設計)來簡述一下我們的研究過程及我們對每種設計的感受。1、第一環(huán)節(jié)開課的研究關于開課的研究,第一次試教,學生回憶長度單位復習長度單位間的進率引導到面積單位的研究。

(三)鞏固內化俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習作用。提高了教學的有效性。所以在學習完新知后我設計了兩組游泳與跑步的場景,意在讓學生知道這兩組成績排名與上面不一樣,是秒數(shù)越少成績越高.(從小到大排列)使學生明確要根據(jù)生活實際靈活的解決問題。游泳結果是9.88<10.3<11.2跑步結果是12<13.16<17.5<18.2(四)拓展練習用0、2、4、6四個數(shù)字和小數(shù)點寫出下面小數(shù),看誰寫得多。大于2的三位小數(shù)。小于6的三位小數(shù)。通過這組的練習,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的拓展。(五)總結歸納說一說小數(shù)比較大小的方法。并強調小數(shù)的數(shù)位多不一定大。

4、完成教科書第65頁練習十的第6題。讓學生根據(jù)每種商品在每家商店中的售價情況,選擇便宜的買。要學生解釋什么叫便宜。(就是這幾個數(shù)中最小的數(shù))5、完成教科書第65頁練習十的第7題。先讓學生獨立完成后,教師講評時得問學生是怎樣比較這幾個數(shù)的大小的?(比較幾個小數(shù)的大小時,可采用排列的方法,將幾個數(shù)豎著排下來,注意數(shù)位對齊,也就是小數(shù)點對齊,這樣比較起來較快,又不容易產生錯誤)練習中我注重輔助差生掌握新知,并鼓勵他們的點滴進步,讓他們感受到功成的喜悅。在教學中我利用幻燈教學,有利于培養(yǎng)學生的智力和能力。借助幻燈直觀、形象、感染力強,便于數(shù)形結合的特點,調動學生的主觀能動作用,促進學生積極思維,使課堂教學節(jié)奏加快,從而年高課堂教學效率。

設計意圖:考慮學生的個別差異,分層次布置作業(yè),讓基礎差的學生能夠吃飽,基礎好的學生吃好,使每位學生都感到學有所獲。五、評價分析數(shù)學課程標準指出:學生的數(shù)學學習內容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,而動手實踐、自主探究與合作交流是學生學習數(shù)學的重要方式。本著這一理念,在本課的教學過程中,我嚴格遵循由感性到理性,將數(shù)學知識始終與現(xiàn)實生活中學生熟悉的實際問題相結合,不斷提高他們應用數(shù)學方法分析問題、解決問題的能力。在重視課本基礎知識的基礎上,適當進行拓展延伸,培養(yǎng)學生的創(chuàng)新意識,同時根據(jù)新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識,而且注重學生對待學習的態(tài)度是否積極。課堂中也盡量給學生更多的空間、更多展示自我的機會,讓學生在和諧的氛圍中認識自我、找到自信、體驗成功的樂趣。使學生的主體地位得到充分的體現(xiàn),使教學過程成為一個在發(fā)現(xiàn)在創(chuàng)造的認知過程。

方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關系求方程的另一根判別式及根與系數(shù)的關系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.

3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

各位評委:大家好!今天我說課的內容是人教版五年級上冊第一單元《小數(shù)乘法》的第二課時小數(shù)乘小數(shù)(一)說教材1、教學內容:P4例3、做一做,P5例4、做一做,P8—9練習一第5—9、13題。2、教學目的:1、掌握小數(shù)乘法的計算法則,使學生掌握在確定積的小數(shù)位時,位數(shù)不夠的,要在前面用0補足。2、比較正確地計算小數(shù)乘法,提高計算能力。3、培養(yǎng)學生的遷移類推能力和概括能力,以及運用所學知識解決新問題的能力。3、教學重點:小數(shù)乘法的計算法則。4、教學難點:小數(shù)乘法中積的小數(shù)位數(shù)和小數(shù)點的定位,乘得的積小數(shù)位數(shù)不夠的,要在前面用0補足。(二)說教法和學法本課所用的教學方法有: 講授法、談話法、討論法、練習法。 學法有:自學法,小組合作學習的方法,遷移類推概括法,歸納總結法。

(由除數(shù)的小數(shù)位決定。因為我們只要把除數(shù)轉化成整數(shù)就成了除數(shù)是整數(shù)的小數(shù)除法。如:0.756÷0.18=75.6÷18。)(設計意圖:在試做的基礎上引導學生初步感受轉化時小數(shù)點的移位方法,為自主概括法則作鋪墊)2、學習例5:買0.75千克油用10.5元。每千克油的價格是多少元?學生列式:10.5÷0.75。①要把除數(shù)0.75變成整數(shù),怎樣轉化?(把除數(shù)0.75擴大100倍轉化成75。要使商不變,被除數(shù)也應擴大100倍。)②被除數(shù)10.5擴大100倍是多少?(10.5擴大100倍是1050,小數(shù)部分位數(shù)不夠在末尾被“0”。)3、比較例4與例5有什么不同?(被除數(shù)在移動小數(shù)點時,位數(shù)不夠在末尾用“0”補足。)4、練習:課本P21練一練第2題,學生獨立完成后,歸納小結。(設計意圖:對被除數(shù)小數(shù)點移位后補“0”的方法,教師可作適當點撥。學生試做后先不急于講評,讓他們對照教材中的兩個例題啟發(fā)學生觀察、比較兩道例題的不同點與計算時的注意點。引導學生分析、比較,逐步抽象出移位的方法。)

一、說教材:用字母表示數(shù)是人教版小學數(shù)學五年級上冊第四單元的教學內容。在學習本單元之前,學生已經(jīng)接觸過一些用字母表示運算律,對簡單實際問題中的基本數(shù)量關系熟悉了,這些都是學生理解本單元所學知識的重要基礎。同時本單元知識又是學生進入代數(shù)知識學習的入門知識,是學習方程的基礎。二、說教學目標和重難點:(一)目標1、理解用字母可以表示數(shù),能用含有字母的式子表示簡單的數(shù)和運算定律,初步學習用代數(shù)符號語言進行表述交流。2、經(jīng)歷把簡單的實際問題用含有字母的式子進行表達的抽象過程,發(fā)展符號感。3、在解決問題中體會數(shù)學與生活的聯(lián)系,體會代數(shù)符號表示實際問題中數(shù)量關系的概括性和簡潔性,從而進一步感受學習數(shù)學的價值。(二)重點難點:理解用字母表示數(shù)的含義,能用含有字母的式子表示簡單的數(shù)量關系。正確地用含有字母的式子表示運算定律。

三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學生自己閱讀課本內容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質與直角三角形的性質.【類型三】 利用正方形的性質證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。