提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數(shù)學下冊利用三角函數(shù)測高2教案

    北師大初中九年級數(shù)學下冊利用三角函數(shù)測高2教案

    問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.

  • 北師大版初中數(shù)學九年級下冊三角函數(shù)的有關計算說課稿

    北師大版初中數(shù)學九年級下冊三角函數(shù)的有關計算說課稿

    設計意圖:最后是當堂訓練,目標檢測,這一環(huán)節(jié)要盡量讓學生獨立完成,使訓練高效,在學生訓練時教師要巡回輔導,重點關注課堂表現(xiàn)不太突出的學生,由于本課時內容多,訓練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓練的時間預估不足。四、教學思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設符合學生實際的問題情境,讓學生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學生的應用意識及分析問題解決問題的能力,培養(yǎng)了學生的數(shù)學建模能力及轉化的思維方法。2.充分相信學生并為學生提供展示自己的機會,課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學生形成積極主動的求知態(tài)度。

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關系,從而進一步建立反比例函數(shù)模型.三、板書設計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)1教案

    (2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

  • 人教A版高中數(shù)學必修一三角函數(shù)的應用教學設計(2)

    人教A版高中數(shù)學必修一三角函數(shù)的應用教學設計(2)

    本節(jié)課是在學習了三角函數(shù)圖象和性質的前提下來學習三角函數(shù)模型的簡單應用,進一步突出函數(shù)來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學“建模”思想,從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學關系來建立數(shù)學模型; 3.數(shù)學運算:實際問題求解; 4.數(shù)學建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,提高學生的建模、分析問題、數(shù)形結合、抽象概括等能力.

  • 北師大初中九年級數(shù)學下冊圓的對稱性教案

    北師大初中九年級數(shù)學下冊圓的對稱性教案

    我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)2教案

    北師大初中九年級數(shù)學下冊二次函數(shù)2教案

    4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

  • 北師大初中九年級數(shù)學下冊正切與坡度1教案

    北師大初中九年級數(shù)學下冊正切與坡度1教案

    已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊正弦與余弦1教案

    北師大初中九年級數(shù)學下冊正弦與余弦1教案

    解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.

  • 【高教版】中職數(shù)學基礎模塊上冊:5.6《三角函數(shù)的圖像和性質》優(yōu)秀教案

    【高教版】中職數(shù)學基礎模塊上冊:5.6《三角函數(shù)的圖像和性質》優(yōu)秀教案

    創(chuàng)設情景 興趣導入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經(jīng)過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當取定義域內的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.

  • 北師大初中八年級數(shù)學下冊分式方程的應用教案

    北師大初中八年級數(shù)學下冊分式方程的應用教案

    解:(1)設第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結:本題具有一定的綜合性,應該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設計列分式方程解應用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設未知數(shù);第三步,根據(jù)題目中的數(shù)量關系列出式子,并找準等量關系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.

  • 北師大初中八年級數(shù)學下冊一元一次不等式的應用教案

    北師大初中八年級數(shù)學下冊一元一次不等式的應用教案

    有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結:此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數(shù)列不等式―→解不等式―→結合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

  • 北師大初中八年級數(shù)學下冊一元一次不等式組的解法及應用教案

    北師大初中八年級數(shù)學下冊一元一次不等式組的解法及應用教案

    安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設備2臺,乙種設備10臺;②購買甲種設備3臺,乙種設備9臺;③購買甲種設備4臺,乙種設備8臺.方法總結:列不等式組解應用題時,一般只設一個未知數(shù),找出兩個或兩個以上的不等關系,相應地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應求整數(shù)解.三、板書設計1.一元一次不等式組的解法2.一元一次不等式組的實際應用利用一元一次不等式組解應用題關鍵是找出所有可能表達題意的不等關系,再根據(jù)各個不等關系列成相應的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.

  • 北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

    北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

    教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關系?二、導讀:仔細閱讀課本內容后完成下面填空:

  • 北師大初中九年級數(shù)學下冊圓教案

    北師大初中九年級數(shù)學下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。