
( 一) 活動步驟1.全班分為4 各小組:繪畫組, 日記組,網(wǎng)絡(luò)組,實踐組。每個小組設(shè)置 1 名小組長。 我列出了四項作業(yè)供每個學(xué)習(xí)小組選做,之后課上分享展示學(xué)習(xí)成果。(1) 調(diào)查中學(xué)時代對一個人的重要性或者人生影響 (可以調(diào)查周圍的親朋好友 也可以調(diào)查小區(qū)的人) 。調(diào)查結(jié)果寫心得體會或者寫報告,深刻認識到中學(xué)時代 對一個人的重要性。 (實踐組)(2) 走出安逸區(qū),真正的成長是有艱辛和汗水造就的,列出自己的目標、學(xué)習(xí) 習(xí)慣的行動和計劃。對自己的學(xué)習(xí)習(xí)慣進行深刻分析后制訂了習(xí)慣養(yǎng)成計劃表, 每天對照執(zhí)行。學(xué)生可以請求同學(xué)和家長經(jīng)常提醒、監(jiān)督自己,以養(yǎng)成良好的習(xí) 慣,改正缺點,做更好的自己,實現(xiàn)自己的目標。 (繪畫組)(3) 編寫自己的成長手冊 (自評、他評、老師評價) ,記錄你的奮斗目標你的 想法和創(chuàng)意,讓他見證和助推你的成長。 ( 日記組)(4) 負責(zé)記錄,拍照,將活動內(nèi)容傳到 QQ 群里,寫這一單元的活動小報。 (網(wǎng) 絡(luò)組)(二) 時間要求:15 分鐘

2.內(nèi)容內(nèi)在邏輯本單元是七年級上冊教材的第一單元, 作為對初中生活開端的理性闡述,具 有統(tǒng)領(lǐng)全套教材的意義。從整體上看, 本單元既是整個初中道德與法治課程的學(xué) 習(xí)起點, 也是全套教材建構(gòu)的邏輯起點。這個起點包孕了道德與法治課程核心價 值觀的萌芽。第一課《中學(xué)時代》也是整個初中生活開始的第一課, 可謂是重中 之重。第一框“中學(xué)序曲”共兩課時。 主要引領(lǐng)學(xué)生踏著成長的節(jié)拍, 體會角色變 化的意味,了解中學(xué)時代對于人生的意義和價值。第二框“少年有夢”共兩課時。主要幫助學(xué)生為未來的生活確立嶄新的目標, 編織夢想,建立努力就有改變的生活信念,并且為實現(xiàn)中國夢奠定基礎(chǔ)。(三)學(xué)情分析告別小學(xué), 剛跨進中學(xué)大門, 開啟一段全新的生命成長旅程。他們朝氣蓬勃、 活力四射、思維活躍, 但是認知能力、思維方式、人格特點及社會經(jīng)驗等都有待 于進一步發(fā)展; 由于每個人的成長經(jīng)歷、個性心理等方面存在差異, 所以他們的 實際表現(xiàn)也各不相同。

本次活動由三個環(huán)節(jié)構(gòu)成,即“動――靜――動”,這拉,有利于突破重難點,我是這樣掌開教學(xué)思路的。1、激發(fā)興趣(第一環(huán)節(jié))活動開始,教師扮演松鼠媽媽,幼兒扮小松鼠,在歡快的音樂聲中,“媽媽”帶著孩子們在草地上玩片刻后回到房子里休息,媽媽問:“孩子們,我們住的房子會動嗎?你見過會動的房子嗎?可是,有一只松鼠寶寶卻建造了一座會動的房子,這到底是怎么一回事呢?”我以這樣的形式導(dǎo)入,目的是激發(fā)幼兒興趣,帶著疑問聽故事。2、組織教學(xué),學(xué)習(xí)重點(第二環(huán)節(jié))這一環(huán)節(jié)是讓幼兒理解掌握故事內(nèi)容,也是完成教學(xué)重點的主要環(huán)節(jié),可分為三個小部分:(1)、視聽結(jié)合,整體感知通過觀看電腦課件,幼兒園完整欣賞故事,使他們對故事內(nèi)容有初步整體的印象。設(shè)計提問:故事中有誰?會動的房子到底是怎么一回事?(2)、一問一 答,緊扣重點幼兒分片段觀看,教師根據(jù)故事內(nèi)容進行提問,啟發(fā)引導(dǎo),幫助幼兒具體感知,理解故事內(nèi)容。設(shè)計提問:小松鼠在哪里造了房子?房子造好了發(fā)生了什么事?小松鼠分別到了哪些地方?那兒美嗎?引導(dǎo)幼兒學(xué)習(xí)用語言進行表述,并模仿自然界美妙的聲音:風(fēng)聲、海浪聲、馬兒奔跑聲。

二、說活動家目標及重點難點1、理解故事情節(jié),感受作品中清新的大自然畫面。2、感受象聲詞,用語言正確地描述生活與自然的各種聲音。3、豐富詞匯,發(fā)展幼兒的觀察力,思維能力和口語表達能力。本節(jié)課的重點是理解故事情節(jié),難點是學(xué)習(xí)詞語“手舞足蹈、慚愧、馱。”三、說活動準備1、課件制作2、場景布置:大樹底下、山腳下、大海邊、草原上。四、說教法:根據(jù)幼兒好奇、好問、好動、好模仿及具體形象思維占優(yōu)勢的特點,本次活動我主要采取以下幾種教法。1、啟發(fā)引導(dǎo)法:通過引導(dǎo)幼兒直觀的觀察,感知故事內(nèi)容,并用遞進式的提問,幫助幼兒理解故事。2、創(chuàng)設(shè)多媒體情景直觀法:在活動中運用多媒體教學(xué),符合幼兒愛看動畫的特點。多媒體的聲音,清晰美麗的畫面,讓孩子直接感知,從而更好的理解故事。五、說學(xué)法1、學(xué)觀察:通過觀看課件,把幼兒帶入美麗、清新的大自然中,視覺與聽覺的結(jié)合,使幼兒理解故事中的意境,感知自然界中的各種聲響,調(diào)動幼兒的積極性,也激發(fā)了他們熱愛大自然,熱愛生活的情感。2、學(xué)思考:通過教師適當?shù)靥釂?,激發(fā)孩子們想象、思考、感受,發(fā)展幼兒的想象力。六、說活動過程:本次活動由三個環(huán)節(jié)構(gòu)成,即“動――靜――動”,這拉,有利于突破重難點,我是這樣掌開教學(xué)思路的。1、激發(fā)興趣(第一環(huán)節(jié))活動開始,教師扮演松鼠媽媽,幼兒扮小松鼠,在歡快的音樂聲中,“媽媽”帶著孩子們在草地上玩片刻后回到房子里休息,媽媽問:“孩子們,我們住的房子會動嗎?你見過會動的房子嗎?可是,有一只松鼠寶寶卻建造了一座會動的房子,這到底是怎么一回事呢?”我以這樣的形式導(dǎo)入,目的是激發(fā)幼兒興趣,帶著疑問聽故事。

新建成的紅星中學(xué),首次招收七年級新生12個班共500人,學(xué)校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設(shè)計一個調(diào)查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應(yīng)圍繞這兩個因素進行.解:調(diào)查方案如下:(1)對全體新生的到校方式進行問卷調(diào)查.調(diào)查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問卷結(jié)果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學(xué)校的建設(shè)規(guī)劃、財力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調(diào)查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:

1. 小明的腳長23.6厘米,鞋號應(yīng)是 號。2.小亮的腳長25.1厘米,鞋號應(yīng)是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結(jié):剛才同學(xué)們都體會到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應(yīng)用(四)反饋練習(xí)課內(nèi)練習(xí)以下是某校七年級南,女生各10名右眼裸視的檢測結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學(xué)生右眼視力跟性別有關(guān)嗎?為了回答這個問題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學(xué)快樂通過本節(jié)課的學(xué)習(xí),你有那些收獲?(課堂小結(jié)交給學(xué)生)數(shù)據(jù)收集的方法:直接觀察、測量、調(diào)查、實驗、查閱文獻資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學(xué)生可能還會指出鞋碼和腳長之間的關(guān)系等)

若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強學(xué)習(xí)數(shù)學(xué)的興趣.

2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積

(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學(xué)生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.

請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習(xí):1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2

1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標準角度為30°±1°,一名質(zhì)檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學(xué)的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.

解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.

在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.

方法三:一個同學(xué)先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

二、學(xué)情分析 在校領(lǐng)導(dǎo)的正確領(lǐng)導(dǎo)下,本學(xué)期我校生源比去年有了重大的變化.高一年級招收了400多名新生,學(xué)校帶來了新的希望.然而,我清醒地認識到任重而道遠的現(xiàn)實是,我校實驗班分數(shù)線僅為140分,普通班入學(xué)成績?nèi)跃痈浇髦袑W(xué)之末.要實現(xiàn)我校教學(xué)質(zhì)量的根本性進步,非一朝一夕之功.實驗班的教學(xué)當然是重中之重,而普通班又絕不能一棄了之.現(xiàn)在的學(xué)情與現(xiàn)實決定了并不是付出十分努力就一定有十分收獲.但教師的責(zé)任與職業(yè)道德時刻提醒我,沒有付出一定是沒有收獲的.作為新時代的教師,只有付出百倍的努力,苦干加巧干,才能對得起良心,對得起人民群眾的期望.

一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.

一.說教材(一)教材內(nèi)容地位作用與學(xué)情單式折線統(tǒng)計圖是人教版義務(wù)教育課程標準五年級下冊第7單元的內(nèi)容。是在學(xué)生之前學(xué)習(xí)掌握了數(shù)據(jù)收集、整理、描述與分析等簡單基本方法,會用簡單統(tǒng)計表、條形統(tǒng)計圖等方法表示和分析統(tǒng)計數(shù)據(jù)與解決簡單實際問題的基礎(chǔ)上進行教學(xué)的;通過折線統(tǒng)計圖的教學(xué),幫助學(xué)生了解折線統(tǒng)計圖的含義、特點,并進行簡單的數(shù)據(jù)分析,了解統(tǒng)計在現(xiàn)實生活中的意義和作用,有效構(gòu)建數(shù)據(jù)分析觀念。(二)教學(xué)目標基于以上對教材的分析理解和學(xué)生生活經(jīng)驗與從具體到抽象的認知規(guī)律,擬將教學(xué)目標定位確立為: 1.知識與技能:認識了解單式折線統(tǒng)計圖及其特點和作用,根據(jù)需要用折線統(tǒng)計圖直觀表示統(tǒng)計數(shù)據(jù),并進行簡單的數(shù)據(jù)解釋和分析與預(yù)測。 2.過程與方法:經(jīng)歷探究折線統(tǒng)計圖特點與作用的過程,培養(yǎng)發(fā)展學(xué)生發(fā)現(xiàn)、提出、分析、解決問題的能力。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。