
4、課堂討論:社會主義的根本原則是共同富裕,這也是正確處理分配關(guān)系的目標(biāo)。而十五大報告卻進(jìn)一步明確指出“允許和鼓勵一部分人通過誠實勞動和合法經(jīng)營先富起來,允許和鼓勵資本、技術(shù)等生產(chǎn)要素參與收益分配”。這矛盾嗎?為什么?以小組方式進(jìn)行討論,再以代表的形式發(fā)表意見,這樣既調(diào)動了學(xué)生的積極性,也使學(xué)生對內(nèi)容有了更深層次的了解。最后老師加以總結(jié),用“蛋糕效應(yīng)”來闡述“效率優(yōu)先,兼顧公平”的關(guān)系,既形象又貼切,加深學(xué)生的理解。本課時內(nèi)容比較抽象,學(xué)生對于概念的理解有較大的難度。因此在教學(xué)中我采用多媒體課件教學(xué),聯(lián)系生活實際,讓學(xué)生在生活中去體會貨幣的職責(zé),區(qū)分貨幣的職能,以便達(dá)到學(xué)以致用的目的。同時適時設(shè)置疑問,讓學(xué)生與我共同思考,真正實現(xiàn)“師生互動,生生互動”,調(diào)動學(xué)生積極,主動的參與到教學(xué)實踐活動中。(三)課堂小結(jié),強(qiáng)化認(rèn)識。(2—3分鐘)通過歸納小結(jié),既強(qiáng)調(diào)了重點,又鞏固了本節(jié)知識,幫助學(xué)生形成知識網(wǎng)絡(luò),便于課后理解記憶。

一、課程標(biāo)準(zhǔn):1.2比較單一制與聯(lián)邦制的區(qū)別,理解國家形式既包括政權(quán)組織形式,又包括國家結(jié)構(gòu)形式。 二、新課教學(xué):現(xiàn)代國家的結(jié)構(gòu)形式(一)、民族與國家1、民族與國家結(jié)構(gòu)形式的關(guān)系(1)、國家結(jié)構(gòu)形式①含義:如果說國家管理形式主要是指國家的立法、行政和司法機(jī)關(guān)之問的相互關(guān)系,那么,國家結(jié)構(gòu)形式就是指國家的整體與部分、中央與地方之間的相互關(guān)系。補(bǔ)充:國家政權(quán)組制形式即政體與國家結(jié)構(gòu)形式同屬國家形式,但是兩者有嚴(yán)格的區(qū)別:前者是指政權(quán)如何組織,后者是指中央與地方之間的相互關(guān)系。②民族是影響國家結(jié)構(gòu)形式的因素之一影響國家結(jié)構(gòu)形式的因素有很多,民族就是其中之一。(2)、民族①含義:民族是人類歷史上形成的有共同語言、共同地域、共同經(jīng)濟(jì)生活、共同心理素質(zhì)的穩(wěn)定的共同體。補(bǔ)充:民族是一種社會歷史現(xiàn)象,有其產(chǎn)生、發(fā)展和滅亡的過程。

設(shè)疑自探:一個壓縮或拉伸的彈簧就是一個“儲能器”,怎樣衡量形變彈簧蘊(yùn)含能量的多少呢?彈簧的彈性勢能的表達(dá)式可能與那幾個物理量有關(guān)?類比:物體的重力勢能與物體所受的重力和高度有關(guān)。那么彈簧的彈性勢能可能與所受彈力的大小和在彈力方向上的位置變化有關(guān),而由F=kl知彈簧所受彈力等于彈簧的勁度系數(shù)與形變量的乘積。預(yù)測:彈簧的彈性勢能與彈簧的勁度系數(shù)和形變量有關(guān)。學(xué)生討論如何設(shè)計實驗: ①、用同一根彈簧在幾次被壓縮量不同時釋放(勁度系數(shù)相同,改變形變量),觀察小車被彈開的情況。②、分別用兩根彈簧在被壓縮量相同時釋放(形變量相同,勁度系數(shù)不同),觀察小車被彈開的情況。交流探究結(jié)果:彈性勢能隨彈簧形變量增大而增大。隨彈簧的勁度系數(shù)的增大而增大。

“做功的過程就是能量轉(zhuǎn)化過程”,這是本章教學(xué)中的一條主線。對于一種勢能,就一定對應(yīng)于相應(yīng)的力做功。類比研究重力勢能是從分析重力做功入手的,研究彈簧的彈性勢能則應(yīng)從彈簧的彈力做功入手。然而彈簧的彈力是一個變力,如何研究變力做功是本節(jié)的一個難點,也是重點。首先,要引導(dǎo)學(xué)生通過類比重力做功和重力勢能的關(guān)系得出彈簧的彈力做功和彈簧的彈性勢能的關(guān)系。其次,通過合理的猜想與假設(shè)得出彈簧的彈力做功與哪些物理量有關(guān)。最后,類比勻變速直線運動求位移的方法,進(jìn)行知識遷移,利用微元法的思想得到彈簧彈力做功的表達(dá)式,逐步把微分和積分的思想滲透到學(xué)生的思維中。本節(jié)課通過游戲引入課題,通過生活中拉弓射箭、撐桿跳高和彈跳蛙等玩具以及各種彈簧等實例來創(chuàng)設(shè)情景,提出問題。給學(xué)生感性認(rèn)識,引起學(xué)生的好奇心;讓學(xué)生對彈簧彈力做功的影響因素進(jìn)行猜想和假設(shè),提出合理的推測,激發(fā)學(xué)生的探索心理,構(gòu)思實驗,為定性探究打下基礎(chǔ)。然后,引導(dǎo)學(xué)生通過類比重力做功與重力勢能的關(guān)系得出彈簧彈性勢能與彈簧彈力做功的關(guān)系。

高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)

新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。

1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學(xué)生體會到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡單代數(shù)式賦予實際意義,進(jìn)一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學(xué)生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計為學(xué)生精彩的生成提供了很好的平臺,在實際教學(xué)過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點,及時進(jìn)行引導(dǎo)和激勵,并根據(jù)具體教學(xué)對象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過程真正成為生成教育智慧和增強(qiáng)實踐能力的過程.讓預(yù)設(shè)與生成齊飛.

練習(xí)3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學(xué)知識升華,提升)練習(xí)4、動動腦。(讓學(xué)生進(jìn)一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識技能1四、說課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵學(xué)生用所學(xué)的知識解決身邊的問題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識,有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對新課標(biāo)和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會存在一定的偏差;另外,由于對學(xué)生的認(rèn)知規(guī)律認(rèn)識不夠,所以教學(xué)活動的設(shè)計不一定十分有效。所有這些都有待教學(xué)實踐的檢驗。

教學(xué)不應(yīng)僅僅傳授課本上的知識內(nèi)容,而應(yīng)該在傳授知識內(nèi)容的同時,注意對學(xué)生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運算法則告訴學(xué)生,而是由學(xué)生利用已有知識探究得到.在探究過程中,學(xué)生的數(shù)學(xué)思想得到了進(jìn)一步的拓展,學(xué)生的綜合能力得到了進(jìn)一步的提高.當(dāng)然一節(jié)課的提高并不顯著,但只要堅持這種方式方法,最終會有一個美好的結(jié)果.2.充分挖掘知識內(nèi)涵,使學(xué)生體會數(shù)學(xué)知識間的密切聯(lián)系在教學(xué)中,有意識、有計劃的設(shè)計教學(xué)活動,引導(dǎo)學(xué)生體會單項式乘法與單項式除法之間的聯(lián)系與區(qū)別,感受數(shù)學(xué)的整體性,不斷豐富學(xué)生的解題策略,提高解決問題的能力.3.課堂上應(yīng)當(dāng)把更多的時間留給學(xué)生在課堂教學(xué)中應(yīng)當(dāng)把更多時間交給學(xué)生.本節(jié)課中計算法則的探究,例題的講解,習(xí)題的完成,知識的總結(jié)盡可能的全部由學(xué)生完成,教師所起的作用是點撥,評價和指導(dǎo).這樣做,可以更好的體現(xiàn)以學(xué)生為中心的教學(xué)思想,能更好的提高學(xué)生的綜合能力.

有意義,字母x的取值必須滿足什么條件?設(shè)計意圖:通過例題的講解,使學(xué)生加深對所學(xué)知識的理解,避免一些常見錯誤。而變式練習(xí)設(shè)計,延續(xù)的例題的風(fēng)格,一步一步,步步深入,本節(jié)課的教學(xué)難點就在學(xué)生的操作活動中迎刃而解了。對提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運用,提高認(rèn)識1、通過基礎(chǔ)訓(xùn)練讓學(xué)生體驗學(xué)習(xí)的成就感。2、應(yīng)用拓展:增加難處,再次讓學(xué)生聯(lián)系以前的知識,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識。(六)、總結(jié)評價,質(zhì)疑問難這節(jié)課我們學(xué)習(xí)了什么?設(shè)計意圖:學(xué)生共同總結(jié),互相取長補(bǔ)短,學(xué)生在暢所欲言中對二次根式的認(rèn)知得到進(jìn)一步的鞏固升華。五、板書設(shè)計.采用綱領(lǐng)式的板書,使學(xué)生有“話”可說,有“理”可循,在簡單板書設(shè)計中使學(xué)生體會到數(shù)學(xué)的簡潔美。

③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導(dǎo)學(xué)生總結(jié)學(xué)習(xí)體會,教給學(xué)生掌握“從特殊到一般”的認(rèn)識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關(guān)系式的一般式的求法,以此突破教學(xué)難點。在學(xué)習(xí)過程中,我巡視并予以個別指導(dǎo),關(guān)注學(xué)生的個體發(fā)展。經(jīng)學(xué)生分析:(1)當(dāng)月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當(dāng)x=1760時,y=0.05×(1760-1600)=8(元);(3)設(shè)此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學(xué)效果課前:通過本節(jié)課的學(xué)習(xí),教學(xué)目標(biāo)應(yīng)該可以基本達(dá)成,學(xué)生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式,且通過本節(jié)課的學(xué)習(xí)學(xué)生的抽象思維能力,數(shù)學(xué)應(yīng)用能力都能有所提升,

說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補(bǔ)充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設(shè)計意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習(xí):課本44頁練習(xí)2,3題5.歸納總結(jié),結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點知識和學(xué)習(xí)方法,達(dá)到掌握重點,順理成章的目的。6.作業(yè):課本49頁習(xí)題1,2題

1.通過實例體會一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會利用數(shù)軸解較簡單的一元一次不等式組。4.培養(yǎng)學(xué)生分析、解決實際問題的能力。5.通過實際問題的解決,體會數(shù)學(xué)知識在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數(shù)學(xué)的價值。四、教學(xué)重、難點分析教學(xué)重點:1.理解有關(guān)不等式組的概念.2.會解由兩個一元一次不等式組成的不等式組.教學(xué)難點:在數(shù)軸上確定解集.五、教學(xué)手段分析本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動積極性。

通過以上例題幫助學(xué)生總結(jié)出分式乘除法的運算步驟(當(dāng)分式的分子與分母都是單項式時和當(dāng)分式的分子、分母中有多項式兩種情況)4、隨堂練習(xí)。(約5分鐘)76頁第一題,共3個小題。教學(xué)效果:在總結(jié)出分式乘除法的運算步驟后,大部分學(xué)生能很好的掌握,但是還有些學(xué)生忘記運算結(jié)果要化成最簡形式,老師要及時提醒學(xué)生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學(xué)生有必要復(fù)習(xí)和鞏固一下分解因式的知識。5、數(shù)學(xué)理解(約5分鐘)教材77頁的數(shù)學(xué)理解,學(xué)生很容易出現(xiàn)像小明那樣的錯誤。但是也很容易找出錯誤的原因。補(bǔ)充例3 計算(xy-x2)÷ ? 教學(xué)效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學(xué)生,負(fù)號要提到分式前面去。6、課堂小結(jié)(約3分鐘)先學(xué)生分組小結(jié),在全班交流,最后老師總結(jié)。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。