
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊勝1場得2分,負(fù)1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負(fù)場數(shù)分別是多少?方法一:(利用之前的知識,學(xué)生自己列出并求解)解:設(shè)剩X場,則負(fù)(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場,負(fù)Y場。根據(jù):勝的場數(shù)+負(fù)的場數(shù)=總場數(shù) 勝場積分+負(fù)場積分=總積分得到:X+Y=10 2X+Y=16

二、文本解讀方法點撥研讀課文第三、第四段。要求:師范讀,生輕聲跟讀,然后生齊讀。方法:第三段秦統(tǒng)一天下前,應(yīng)用較強的語勢讀出,充分渲染塑造一個“威加海內(nèi)”的帝王形象。統(tǒng)一天下之后,秦王朝至此已達頂峰,這意味著從此轉(zhuǎn)入守勢。這段文字義正詞嚴(yán),充分揭露了秦的暴虐無道,故誦讀應(yīng)有“聲討”之勢。末句“天下已定”總承以上內(nèi)容,其后應(yīng)有較長停頓,然后轉(zhuǎn)入敘秦始皇的心態(tài),用以反襯下文滅亡之速,讀時須有嘲諷意,突出“自以為”“萬世之業(yè)”等詞語。第四段起首“始皇既沒,余威震于殊俗”兩句,暗示民心不服,人人自危,宜用從容、沉著的語調(diào)讀出?!叭魂惿娈Y牖繩樞之子……”急轉(zhuǎn)直下,稍作停頓,以下先抑(“陳涉”至“之富”)后揚(“躡足”至段末)宜讀出對比情調(diào)。末句敘事結(jié)束全篇,要讀得沉著、有力。三、信息篩選學(xué)生自譯課文(一)學(xué)生參照文下注釋,口譯第三、四段,遇有疑難則作好相應(yīng)標(biāo)記,為討論做好準(zhǔn)備。

2、黛玉進入賈府到賈母處,她看到了什么?提示:從榮府西角門進去,走“一射之地”,轉(zhuǎn)至垂花門,過穿堂,繞插屏,再經(jīng)三間過廳,后面方是賈母居住的正房大院?!罢嫖彘g上房,皆雕梁畫棟,兩邊穿山游廊廂房,掛著各色鸚鵡、畫眉等鳥雀。”這樣穿堂過廳一路行來,仆役、婆子、丫環(huán)輪番更換,的確給人以侯門深似海的感覺。然而賈母居處還不是正內(nèi)室。3、黛玉去拜見二舅舅時又看到什么?提示:往東?!按┻^一個東西的穿堂,向南大廳之后,儀門內(nèi)大院落,上面五間大正房,兩邊廂房鹿頂耳房鉆山,四通八達,軒昂壯麗”。堂屋中迎面“一個赤金九龍青地大匾,匾上寫著斗大的三個大字,是‘榮禧堂’,后有一行小字:‘某年月日,書賜榮國公賈源’,又有‘萬幾宸翰之寶’。”屋內(nèi)擺設(shè)有名貴的家具,珍貴的字畫、古玩?!坝钟幸桓睂β?lián),乃烏木聯(lián)牌,鑲著鏨銀的字跡,道是:座上珠譏昭日月,堂前黼黻煥煙霞?!庇商梦葸M入東耳房,這里是起居室,另有一番布置,再到東廊三間小正房王夫人的住室,又別有擺設(shè)。

【參考】“滄海月明珠有淚,藍(lán)田日暖玉生煙?!睖婧V械恼渲橹挥性诿髟轮?,才能流下晶瑩的淚花;藍(lán)田下的美玉只有在日暖之時,才能升騰飄逸的煙霞。物猶如此,人當(dāng)如是?!皽婧T旅鳌迸c“藍(lán)田日暖”優(yōu)美意境的創(chuàng)設(shè),不僅僅是詩人精妙絕倫藝術(shù)素養(yǎng)的表現(xiàn)和揮灑,更是詩人回答人生價值的標(biāo)準(zhǔn)和尺度。詩人以物推人,拓展深化了詩作的主題,整篇的閃光點在此,魂亦在此。【參考】“此情可待成追憶,只是當(dāng)時已惘然?!弊窇涍^去,盡管自己以一顆浸滿血淚的真誠之心,付出巨大的努力,去追求美好的人生理想,可“五十弦”如玉的歲月、如珠的年華,值得珍惜之時卻等閑而過;面對現(xiàn)實:戀人生離、愛妻死別、盛年已逝、抱負(fù)難展、功業(yè)未建……,幡醒悟之日已風(fēng)光不再。如泣如訴的悲劇式結(jié)問,又讓詩人重新回到對“人生價值到底是什么?到底該怎樣實現(xiàn)?”深深的思考和迷惑之中,大大增強了詩作的震撼力。

(幻燈六)巴金作品《家》描寫的是“五四”之后,成都地區(qū)一個封建大家庭走向崩潰的故事。故事集中在1920年冬到1921年秋的八九個月時間里。成都的一個官僚地主家庭高公館,一家之主的高老太爺,封建專制,頑固不化。長房長孫覺新,為人厚道,卻很軟弱,原與梅表姐相愛,后屈從于老太爺之命而與李瑞玨結(jié)婚。后來梅和瑞玨雙雙慘死。覺新的胞弟覺民、覺慧積極參加愛國運動,從而和馮公館的馮樂山成了死對頭。覺民愛上琴,馮樂山卻要他娶自己的侄孫女,在覺民覺慧的反抗下,他們終于取得勝利。覺慧愛上聰明伶俐的婢女鳴鳳,但馮樂山卻指名要娶鳴鳳為妾,鳴鳳堅決不從,投湖自盡…至此,覺新有所覺醒,而覺慧則毅然脫離家庭,投身革命。(故事主要以高家三兄弟的愛情遭際為線索。)

三、教學(xué)目標(biāo)根據(jù)《錦瑟》詩的地位作用以及學(xué)生的實際情況,還有在古詩詞教學(xué)方面課程標(biāo)準(zhǔn)的相關(guān)要求,現(xiàn)確定以下“三維教學(xué)目標(biāo)”:(一)知識與技能目標(biāo):感受體悟古典詩歌的意境美,發(fā)揮合理的主觀能動性進行創(chuàng)新性的閱讀鑒賞,正確認(rèn)識意象在詩歌意境中的重要作用。并在上述的基礎(chǔ)上提高鑒賞能力和審美情操。(二)過程與方法目標(biāo):《錦瑟》詩的講解采用“引導(dǎo)與自我生成”的方法,從老師的引導(dǎo)開始,以學(xué)生的研討交流再加之教師的總結(jié)結(jié)束。利用教師引導(dǎo)和師生互動刺激學(xué)生的領(lǐng)悟力,提高學(xué)生的認(rèn)知水平與能力。(三)情感態(tài)度價值觀目標(biāo):培養(yǎng)學(xué)生在尊重傳統(tǒng)文化的基礎(chǔ)上熱愛祖國自己文化的態(tài)度,讓學(xué)生正確認(rèn)識古典詩詞的精神美。最后在自我感悟中陶冶情操,明心啟智。

教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識回顧】 初中我們曾經(jīng)學(xué)習(xí)過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個組內(nèi)的個數(shù). 【知識鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點數(shù)值時需要考慮分點值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動腦思考 探索新知 【新知識】 各組內(nèi)數(shù)據(jù)的個數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個數(shù)之比叫做該組的頻率. 計算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25

授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學(xué)目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應(yīng)用問題; 3.通過對一些應(yīng)用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書設(shè)計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別

重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

課題序號6-3授課形式講授與練習(xí)課題名稱等比數(shù)列課時2教學(xué) 目標(biāo)知識 目標(biāo)理解并掌握等比數(shù)列的概念,掌握并能應(yīng)用等比數(shù)列的通項公式及前n項和公式。能力 目標(biāo)通過公式的推導(dǎo)和應(yīng)用,使學(xué)生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識問題、分析問題、解決問題的一般思路和方法 。素質(zhì) 目標(biāo)通過對等比數(shù)列知識的學(xué)習(xí),培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、正確總結(jié)的科學(xué)思維習(xí)慣和嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。教學(xué) 重點等比數(shù)列的概念及通項公式、前n項和公式的推導(dǎo)過程及運用。教學(xué) 難點對等比數(shù)列的通項公式與求和公式變式運用。教學(xué)內(nèi)容 調(diào)整無學(xué)生知識與 能力準(zhǔn)備數(shù)列的概念課后拓展 練習(xí) 習(xí)題(P.21): 3,4.教學(xué) 反思 教研室 審核

課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標(biāo)群體14級五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標(biāo): 正確分析問題的能力 制造業(yè)通用能力目標(biāo): 正確分析問題的能力學(xué)習(xí)重點直線的斜率公式的應(yīng)用.學(xué)習(xí)難點直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問教學(xué)媒體黑板、粉筆
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。