
已知一水壩的橫斷面是梯形ABCD,下底BC長(zhǎng)14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長(zhǎng)為46m,求它的上底的長(zhǎng)(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長(zhǎng)約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無(wú)線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說明理由.

我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).

教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.

[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

1、導(dǎo)語(yǔ):同學(xué)們,在與人相處,與人交流的過程中,文明用語(yǔ)不可少。我們?cè)诓煌牡攸c(diǎn),不同的場(chǎng)合正確使用文明用語(yǔ),有助于我們與人交往。尤其是對(duì)于我們學(xué)生來(lái)說,如果經(jīng)常使用文明用語(yǔ),那么人人都會(huì)喜歡我們,夸獎(jiǎng)我們。 2、講故事:一個(gè)年輕人去張村,可他不認(rèn)識(shí)去張村的路。半路上遇見一位老人,年輕人喊道“喂,老頭兒,這里離張村有多遠(yuǎn)?”老頭脫口而出:“無(wú)禮!”年輕人足足走了五里路,一直沒有看見有叫張村的地方。年輕人停下來(lái)想了又想,似乎悟出了什么。年輕人的行為給自己帶來(lái)了什么結(jié)果?(小結(jié))什么是禮貌,它與尊重的關(guān)系。 你想做個(gè)懂禮貌的孩子嗎?要想懂禮貌必須先知道什么? 3、學(xué)生說出常用的文明語(yǔ)言及使用的場(chǎng)合和對(duì)象。(小組討論,選代表發(fā)言) 4、考察情況,即興表演。同學(xué)們說得都很不錯(cuò),現(xiàn)在我們就來(lái)比一比,哪一組是文明禮貌大組。必須認(rèn)真聽老師提出的問題,然后派人表演,表演合格就能領(lǐng)到通行證,得到通行證最多的組就是文明禮貌大組。

這篇課文是一篇童話故事,敘述了小馬馱麥子去磨坊,路上要過一條小河,老牛說水很淺,可以過去,松鼠說水很深,他的伙伴昨天剛被淹死,不能過。小馬沒了主意,只好跑回去問媽媽,媽媽要他親自去試一試。小馬又回到了河邊自己過了河。原來(lái)河水既不像老牛說的那樣淺,也不像松鼠說得那樣深。說明遇事要自己動(dòng)腦筋,想辦法克服困難,找到答案。文章篇幅較長(zhǎng),涉及的事物較多,哲理深刻,但課文情節(jié)美、事物美,構(gòu)圖美,我們教師可以利用課文自身的美去調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣,創(chuàng)設(shè)情境,在生動(dòng)活潑的教學(xué)氣氛中扎扎實(shí)實(shí)的訓(xùn)練學(xué)生的語(yǔ)言。

1.軍事工業(yè) 時(shí)間:19世紀(jì)60—70年代 旗號(hào): 自強(qiáng) 特點(diǎn):1、采取雇傭勞動(dòng)制,使用機(jī)器生產(chǎn)帶有資本主義的因素 2、企業(yè)官辦,管理方式--封建衙門式 產(chǎn)品--軍隊(duì)使用不作為商品投放市場(chǎng) 性質(zhì):帶有資本主義因素 的封建性質(zhì)的企業(yè)

第二課《怎樣保護(hù)我們的眼睛》 一、課題的確定背景 每當(dāng)我們走進(jìn)校園,總會(huì)看到一個(gè)個(gè)“小眼鏡”在校園里走來(lái)走去;每當(dāng)我們走進(jìn)教室,也會(huì)看到許許多多的“小眼鏡”坐在教室里學(xué)習(xí)。透過這“小眼鏡”,我們驚訝,我們震撼,我們傷感!青少年是祖國(guó)的未來(lái),他們需要通過眼睛觀察和感知美麗的大千世界,為了讓學(xué)生清楚造成眼睛近視的原因,了解眼睛近視給自己的學(xué)習(xí)生活帶來(lái)的危害,力求通過此課題的研究,使之認(rèn)識(shí)到從小保護(hù)眼睛的重要性,提高學(xué)生的護(hù)眼意識(shí),更好地為學(xué)生的健康成長(zhǎng)服務(wù)。

1、齊讀第三自然段。思考:亞里士多德講過什么話?伽利略對(duì)這話是怎么看的?(亞里士多德說過:“兩個(gè)鐵球,一個(gè)10磅重,一個(gè)1磅重,同時(shí)從高處落下來(lái),10磅重的一定先著地,速度是1磅重的10倍。”伽利略對(duì)這話產(chǎn)生了懷疑)2、伽利略為什么懷疑亞里士多德說的話?他是怎么想的?(“他想:如果這句話是正確的,……這怎么解釋呢?”)3、伽利略的分析,是把亞里士多德的話當(dāng)作兩種假設(shè),推出兩個(gè)結(jié)論。這兩個(gè)結(jié)論是什么?(①把一個(gè)10磅重,一個(gè)1磅重的兩個(gè)鐵球拴在一起,如果仍然看作是兩個(gè)球,落下的速度應(yīng)當(dāng)比原來(lái)10磅重的鐵球慢。②如果看做是一個(gè)整體,落下的速度,應(yīng)當(dāng)比原來(lái)10磅重的鐵球快)4.這兩個(gè)結(jié)果一樣嗎?是什么樣的結(jié)果?(不—樣,是相互矛盾的)5.根據(jù)同一句話,會(huì)推出兩個(gè)相互矛盾的結(jié)果,所以伽利略認(rèn)為這句話是靠不住的,值得懷疑。6,他打算怎么做?(用試驗(yàn)來(lái)證明不同重量鐵球落地的情況)

(6)交流。6的乘法口訣一共有幾句?口訣中的第一個(gè)數(shù)與算式中的第二個(gè)因數(shù)相同,表示什么?口訣中的第二個(gè)數(shù)與算式的第一個(gè)因數(shù)相同,表示什么?相鄰兩句口訣的積相差幾?哪幾句難記一些?你用什么方法記呢?怎樣記住"三六十八"、"四六二十四"兩句口訣?教師在學(xué)生發(fā)言的基礎(chǔ)上鼓勵(lì)學(xué)生大膽說、想出不同記口訣的方法。(7)應(yīng)用"做一做"第1題(學(xué)生半獨(dú)立完成):①用6根小棒擺1個(gè)六邊形;②擺2個(gè)六邊形要用多少根小棒?你是怎樣想的?(想口訣"二六十二"。)③運(yùn)用所學(xué)的口訣口答擺4個(gè)、6個(gè)、3個(gè)、5個(gè)六邊形所需要向小棒數(shù)。"做一做"第2題(獨(dú)立完成):①將第2題改為填空題,在圓圈內(nèi)填寫正確的積;②口答得數(shù),并說一說所用口訣。

三、利用乘法口訣進(jìn)行計(jì)算1.復(fù)習(xí)口訣的含義。任意挑出一句乘法口訣(兩個(gè)因數(shù)不同的),讓學(xué)生說說它表示什么意思。如"七八五十六",使學(xué)生知道它既表示8個(gè)7相加是56,又表示?個(gè)8相加是56。2.以游戲的方式開展用口訣進(jìn)行計(jì)算的活動(dòng)。(1)已知兩個(gè)因數(shù)求積的游戲。方法是:請(qǐng)一位學(xué)生隨意說出一個(gè)兩位數(shù),另一位學(xué)生則將這個(gè)兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字相乘,并算出結(jié)果,如果結(jié)果又是一個(gè)兩位數(shù),再將這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字相乘,直至結(jié)果是一位數(shù)或零。如,一位學(xué)生說:"79",另一位學(xué)生則口算:7X9=636X3=181X8=8;一位學(xué)生說:"58":另一位學(xué)生口算:5X8=404X0=0(告訴學(xué)生0和一個(gè)數(shù)相乘得零)一位學(xué)生報(bào)了3個(gè)數(shù)以后,互換角色進(jìn)行。(2)已知積求兩個(gè)因數(shù)的游戲。

教材分析:例4是讓學(xué)生判斷媽媽要買三種生活用品,帶100元錢夠不夠??梢越Y(jié)合這種生活中經(jīng)常出現(xiàn)的情景,使學(xué)生認(rèn)識(shí)到,在日常生活中,有時(shí)需要進(jìn)行精確計(jì)算,有時(shí)根據(jù)實(shí)際的需要只要估算出大致的結(jié)果就可以了,便于學(xué)生更完整、全面、深刻地認(rèn)識(shí)數(shù)學(xué)的功能。估算的策略是多樣化的,可以用連加,也可以用連減,還可以用加減混合,中間包含了加法的估算和減法的估算。教材上呈現(xiàn)了兩種估算策略,有一名學(xué)生用連減的方法先估算出100-28大約得70,再估算出70-43大約得30,從而判斷用剩下的錢買水杯還夠,兩步計(jì)算中都運(yùn)用了估算。另一名學(xué)生先用加法估算出28+43大約得70,再口算出大約還剩30元,從而得出買水杯還夠的結(jié)論,第一步計(jì)算運(yùn)用了估算,第二步是精確計(jì)算。由于每個(gè)個(gè)體的思維方式和思維水平不同,所采取的估算策略也是不同的,教材上除了提供這兩種估算策略以外,還有一名學(xué)生提出問題:“還可以怎樣算呢?”提示教師在教學(xué)時(shí)讓學(xué)生靈活采用適合自己的估算方法,體現(xiàn)了算法多樣化的思想。

(4)列式計(jì)算:94—34=60(個(gè))60—29=31(個(gè))或34+29=63(個(gè))94-63=31(個(gè))讓學(xué)生列出綜合算式,要他們正確的使用小括號(hào)。列好后要求學(xué)生說出每一步表示的意義。94-34-29或94-(34+29)b.教科書第7頁(yè)練習(xí)一的第3題。讓學(xué)生自己分析題目的已知條件和問題,然后用兩種方法列式解答。58-6-7或58-(6+7)[第2題和第3題是配合例2設(shè)計(jì)的。教學(xué)時(shí)先讓學(xué)生說明圖意,然后思考要解決的問題。著重練習(xí)如何正確使用小括號(hào),同時(shí)對(duì)學(xué)生進(jìn)行環(huán)保意識(shí)的教育。]9.作業(yè)安排①.新型電腦公司有87臺(tái)電腦,上午賣出19臺(tái),下午賣出26臺(tái),還剩下多少臺(tái)?(用兩種方法解答)②.班級(jí)里有22張臘光紙,又買來(lái)27張。開聯(lián)歡會(huì)時(shí)用去38張,還剩下多少?gòu)?③.少年宮新購(gòu)進(jìn)小提琴52把,中提琴比小提琴少20把,兩種琴一共有多少把?④.一輛公共汽車?yán)镉?6位乘客,到福州路下去8位,又上來(lái)12位,這時(shí)車上有多少位?

二、學(xué)情分析對(duì)于學(xué)生來(lái)說,在認(rèn)識(shí)角之前,已經(jīng)具備了有關(guān)角的感性經(jīng)驗(yàn)。但是,低年級(jí)學(xué)生的認(rèn)知規(guī)律是以具體的形象思維為主,抽象思維能力較低。這部分內(nèi)容對(duì)于二年級(jí)學(xué)生來(lái)說比較抽象,接受起來(lái)較為困難。為了幫助學(xué)生更好的認(rèn)識(shí)角,形成角的表象。我設(shè)計(jì)了一些貼近學(xué)生生活的數(shù)學(xué)活動(dòng),讓孩子在實(shí)踐活動(dòng)中經(jīng)過獨(dú)立思考,合作探究去認(rèn)識(shí)角,發(fā)現(xiàn)角,從而感受到生活中處處有角。三、教學(xué)目標(biāo)及重難點(diǎn)依據(jù)《課標(biāo)》的要求和教材的特點(diǎn),結(jié)合學(xué)生的生活實(shí)際及年齡特征,我確定了如下的教學(xué)目標(biāo):1、結(jié)合生活情境,感受生活中處處有角,體會(huì)數(shù)學(xué)與生活的密切聯(lián)系。2、通過摸一摸、找一找、搭一搭、畫一畫、比一比等活動(dòng)讓學(xué)生直觀地認(rèn)識(shí)角,感受角的大小。

(1)課件顯示搭正方形的畫面以及問題“4根小棒搭一個(gè)正方形,13根小棒可以搭多少個(gè)正方形,還剩幾根?”。(2)組織小組討論:有13根小棒,能搭幾個(gè)正方形?請(qǐng)每個(gè)同學(xué)利用學(xué)具擺一擺,再依據(jù)上節(jié)課學(xué)習(xí)的除法算式,小組內(nèi)討論用豎式怎樣表示?!驹O(shè)計(jì)意圖:通過擺小棒搭正方形和自主探究等開發(fā)學(xué)生思維,促進(jìn)學(xué)生多層次思考,培養(yǎng)孩子良好的思維方式,推動(dòng)學(xué)生積極思考,逐步開闊學(xué)生解決問題的思路,培養(yǎng)學(xué)生橫向思維能力?!浚?)進(jìn)行全班交流。指名回答;引導(dǎo)學(xué)生探究豎式各數(shù)表示的意思及單位名稱的寫法,并進(jìn)一步認(rèn)識(shí)余數(shù)。課件顯示搭小棒的過程及橫式和豎式:13÷4=3(個(gè))……1(根)答:可以搭3個(gè)正方形,還剩1根。引導(dǎo)學(xué)生認(rèn)識(shí)豎式中:“13”表示把13根小棒拿去分,“4”表示擺一個(gè)正方形需要4根小棒,“3”表示可以擺3個(gè)正方形(強(qiáng)調(diào)單位“個(gè)”),“12”表示3個(gè)正方形共12根(4×3=12)?!?”表示擺了3個(gè)后還剩下1根(強(qiáng)調(diào)單位:“根”),說明“1”是這個(gè)豎式的余數(shù),這1根不能再繼續(xù)往下分了。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。