提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

簡單隨機抽樣教案教學(xué)設(shè)計

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機變量及其分布》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機變量及其分布》教學(xué)設(shè)計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(2)教學(xué)設(shè)計

    溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結(jié)果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的均值教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的均值教學(xué)設(shè)計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量及其分布列(1)教學(xué)設(shè)計

    4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

  • 初中數(shù)學(xué)魯教版七年級上冊《第五章 位置與坐標(biāo) 1 確定位置》教學(xué)設(shè)計教案

    初中數(shù)學(xué)魯教版七年級上冊《第五章 位置與坐標(biāo) 1 確定位置》教學(xué)設(shè)計教案

    1、通過同位之間互說座位位置,檢測知識目標(biāo)2、3的達(dá)成效果。2、通過導(dǎo)學(xué)案上的探究一,檢測知識目標(biāo)2、3的達(dá)成效果。 3、通過探究二,檢測知識目標(biāo)1、3的達(dá)成效果。 4、通過課堂反饋,檢測總體教學(xué)目標(biāo)的達(dá)成效果。本節(jié)課遵循分層施教的原則,以適應(yīng)不同學(xué)生的發(fā)展與提高,針對學(xué)生回答問題本著多鼓勵、少批評的原則,具體從以下幾方面進(jìn)行評價:1、通過學(xué)生獨立思考、參與小組交流和班級集體展示,教師課堂觀察學(xué)生的表現(xiàn),了解學(xué)生對知識的理解和掌握情況。教師進(jìn)行適時的反應(yīng)評價,同時促進(jìn)學(xué)生的自評與互評。2、通過設(shè)計課堂互說座位、探究一、二及達(dá)標(biāo)檢測題,檢測學(xué)習(xí)目標(biāo)達(dá)成情況,同時有利于學(xué)生完成對自己的評價。3.通過課后作業(yè),了解學(xué)生對本課時知識的掌握情況,同時又能檢測學(xué)生分析解決問題的方法和思路,完成教學(xué)反饋評價。

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.5《正態(tài)分布》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:3.5《正態(tài)分布》教學(xué)設(shè)計

    教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點:正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時:2學(xué)時教學(xué)過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標(biāo)計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數(shù)。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.2《雙曲線》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:2.2《雙曲線》教學(xué)設(shè)計

    教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標(biāo)準(zhǔn)方程形式及其對應(yīng)的焦點、準(zhǔn)線.過程與方法掌握對雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),進(jìn)一步理解求曲線方程的方法——坐標(biāo)法.通過本節(jié)課的學(xué)習(xí),提高學(xué)生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學(xué)習(xí),體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實和解決實際問題中的作用,進(jìn)一步體會數(shù)形結(jié)合的思想.2. 教學(xué)重點/難點 教學(xué)重點雙曲線的定義及焦點及雙曲線標(biāo)準(zhǔn)方程.教學(xué)難點在推導(dǎo)雙曲線標(biāo)準(zhǔn)方程的過程中,如何選擇適當(dāng)?shù)淖鴺?biāo)系. 3. 教學(xué)用具 多媒體4. 標(biāo)簽

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.1《橢圓》優(yōu)秀教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:2.1《橢圓》優(yōu)秀教學(xué)設(shè)計

    本人所教的兩個班級學(xué)生普遍存在著數(shù)學(xué)科基礎(chǔ)知識較為薄弱,計算能力較差,綜合能力不強,對數(shù)學(xué)學(xué)習(xí)有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識到自己的不足,對數(shù)學(xué)課的學(xué)習(xí)興趣高,積極性強。 學(xué)生在學(xué)習(xí)交往上表現(xiàn)為個別化學(xué)習(xí),課堂上較為依賴?yán)蠋煹囊龑?dǎo)。學(xué)生的群體性小組交流能力與協(xié)同討論學(xué)習(xí)的能力不強,對學(xué)習(xí)資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學(xué)中盡量分析細(xì)致,減少跨度較大的環(huán)節(jié),對重要的推導(dǎo)過程采用板書方式逐步進(jìn)行,力求讓絕大多數(shù)學(xué)生接受。 1.理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo);掌握橢圓的標(biāo)準(zhǔn)方程;會根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程,會根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點坐標(biāo). 2.通過橢圓圖形的研究和標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實際應(yīng)用。 1.讓學(xué)生經(jīng)歷橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程,進(jìn)一步掌握求曲線方程的一般方法,體會數(shù)形結(jié)合等數(shù)學(xué)思想;培養(yǎng)學(xué)生運用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,進(jìn)一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質(zhì)的對比來提高學(xué)生聯(lián)想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標(biāo)準(zhǔn)方程的必要性和實際意義;體會數(shù)學(xué)的對稱美、簡潔美,培養(yǎng)學(xué)生的審美情趣,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度. 2.進(jìn)一步理解并掌握代數(shù)知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質(zhì)。幫助學(xué)生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 人教版高中數(shù)學(xué)選修3排列與排列數(shù)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3排列與排列數(shù)教學(xué)設(shè)計

    4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個?能被5整除的有多少個?(2)這些四位數(shù)中大于6 500的有多少個?解:(1)偶數(shù)的個位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個);能被5整除的數(shù)個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個).

  • 人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計

    探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.

  • 人教版高中數(shù)學(xué)選修3二項式定理教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3二項式定理教學(xué)設(shè)計

    二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數(shù)不一定相等.(3)二項展開式中的二項式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數(shù)由n次逐項減少1次直到0次,同時字母b按升冪排列,次數(shù)由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序?qū)Ω黜棝]有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計

    2.某小組有20名射手,其中1,2,3,4級射手分別為2,6,9,3名.又若選1,2,3,4級射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為________. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個廠的產(chǎn)品次品率分別為2% , 1%, 1%,問從這批產(chǎn)品中任取一件是次品的概率是多少?

  • 人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計

    3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因為月收入服從正態(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個班的學(xué)生共54人,求這個班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.

  • 人教版高中數(shù)學(xué)選修3組合與組合數(shù)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3組合與組合數(shù)教學(xué)設(shè)計

    解析:因為減法和除法運算中交換兩個數(shù)的位置對計算結(jié)果有影響,所以屬于組合的有2個.答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因為A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個元素的子集共有 個. 解析:滿足要求的子集中含有4個元素,由集合中元素的無序性,知其子集個數(shù)為C_5^4=5.答案:54.平面內(nèi)有12個點,其中有4個點共線,此外再無任何3點共線,以這些點為頂點,可得多少個不同的三角形?解:(方法一)我們把從共線的4個點中取點的多少作為分類的標(biāo)準(zhǔn):第1類,共線的4個點中有2個點作為三角形的頂點,共有C_4^2·C_8^1=48(個)不同的三角形;第2類,共線的4個點中有1個點作為三角形的頂點,共有C_4^1·C_8^2=112(個)不同的三角形;第3類,共線的4個點中沒有點作為三角形的頂點,共有C_8^3=56(個)不同的三角形.由分類加法計數(shù)原理,不同的三角形共有48+112+56=216(個).(方法二 間接法)C_12^3-C_4^3=220-4=216(個).

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.3《拋物線》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:2.3《拋物線》教學(xué)設(shè)計

    一、教學(xué)目標(biāo)(一)知識教育點使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.(二)能力訓(xùn)練點要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點通過一個簡單實驗引入拋物線的定義,可以對學(xué)生進(jìn)行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標(biāo)準(zhǔn)方程.2.難點:拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動設(shè)計提問、回顧、實驗、講解、板演、歸納表格.四、教學(xué)過程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.4《圓》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.4《圓》教學(xué)設(shè)計

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識回顧】 我們知道,平面內(nèi)直線與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無交點; (2)相切:僅有一個交點; (3)相交:有兩個交點. 并且知道,直線與圓的位置關(guān)系,可以由圓心到直線的距離d與半徑r的關(guān)系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質(zhì)疑 引導(dǎo) 分析 了解 思考 思考 帶領(lǐng) 學(xué)生 分析 啟發(fā) 學(xué)生思考 0 15*動腦思考 探索新知 【新知識】 設(shè)圓的標(biāo)準(zhǔn)方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關(guān)系. 講解 說明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學(xué)生 分析 30*鞏固知識 典型例題 【知識鞏固】 例6 判斷下列各直線與圓的位置關(guān)系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標(biāo)準(zhǔn)方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關(guān)系的其他方法? *例7 過點作圓的切線,試求切線方程. 分析 求切線方程的關(guān)鍵是求出切線的斜率.可以利用原點到切線的距離等于半徑的條件來確定. 解 設(shè)所求切線的斜率為,則切線方程為 , 即 . 圓的標(biāo)準(zhǔn)方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線垂直于過切點的半徑”的幾何性質(zhì)求出切線方程? 說明 強調(diào) 引領(lǐng) 講解 說明 引領(lǐng) 講解 說明 觀察 思考 主動 求解 思考 主動 求解 通過例題進(jìn)一步領(lǐng)會 注意 觀察 學(xué)生 是否 理解 知識 點 50

  • 人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計

    (2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機地抽出6道題,若考生至少答對其中的4道題即可通過;若至少答對其中5道題就獲得優(yōu)秀.已知某考生能答對其中10道題,并且知道他在這次考試中已經(jīng)通過,求他獲得優(yōu)秀成績的概率.解:設(shè)事件A為“該考生6道題全答對”,事件B為“該考生答對了其中5道題而另一道答錯”,事件C為“該考生答對了其中4道題而另2道題答錯”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 新人教版高中英語必修3Unit 1 Festivals and Celebrations教學(xué)設(shè)計二

    新人教版高中英語必修3Unit 1 Festivals and Celebrations教學(xué)設(shè)計二

    1. Ss look at the picture and scan the passage to understand the main idea while teacher is giving the following questions to inspire Ss to think.*Where are those people?*What are they doing?*Why are they so excited?2. Ss complete the passage with the appropriate -ing form. Then discuss and check the answers with class.Answers: boring, interesting, taking, exciting, amazing3. The teacher raises questions for the students to discuss and encourages them to express their opinions.*Do you like La Tomatina? Why or why not?4. Each group representative reports the discussion result, the teacher gives feedback and the evaluation.Step 6 PracticeActivity 41. Ss complete the Ex 2 in Using structures.2. Check the answers after finishing the exercises.①The dragon boat races are the most exciting part of the Dragon Boat Festival.② The children were excited to go Easter egg hunting.③What an amazing performance! This is the best music festival I have ever been to.④We were amazed by her funny-looking hat.⑤His inspiring speech at the conference won the admiration/ favour of the audience.⑥This is a challenging game to test your memory and observation capabilities. 3. T asks Ss to finish Ex 3 and 4 in Using structures by themselves, then check the answers with class.Step 6 Homework1. Understand and master the functions and usage of the -ing form;2. Finish the other exercises in Using structures.1、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生是否理解和掌握動詞-ing形式作定語和表語的功能和意義;2、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生能否在理解文段內(nèi)容的基礎(chǔ)上,根據(jù)上下文語境和表達(dá)邏輯,能正確運用動詞-ing形式描述節(jié)日慶典。3、通過本節(jié)內(nèi)容學(xué)習(xí),學(xué)生是否歸納和積累用于表達(dá)情緒的相關(guān)詞匯。

  • 新人教版高中英語必修3Unit 1 Festivals and Celebrations教學(xué)設(shè)計一

    新人教版高中英語必修3Unit 1 Festivals and Celebrations教學(xué)設(shè)計一

    本板塊的活動主題是“談?wù)摴?jié)日活動”(Talk about festival activities),主要是從貼近學(xué)生日常生活的角度來切入“節(jié)日”主題。學(xué)生會聽到發(fā)生在三個國家不同節(jié)日場景下的簡短對話,對話中的人們正在參與或?qū)⒁H歷不同的慶祝活動。隨著全球化的進(jìn)程加速,國際交流日益頻繁,無論是國人走出國門還是外國友人訪問中國,都已成為司空見慣的事情。因此,該板塊所選取的三個典型節(jié)日場景都是屬于跨文化交際語境,不僅每組對話中的人物來自不同的文化背景,對話者的身份和關(guān)系也不盡相同。1. Master the new words related to holiday: the lantern, Carnival, costume, dress(sb)up, march, congratulation, congratulate, riddle, ceremony, samba, make - up, after all. 2. To understand the origin of major world festivals and the activities held to celebrate them and the significance of these activities;3. Improve listening comprehension and oral expression of the topic by listening and talking about traditional festivals around the world;4. Improve my understanding of the topic by watching pictures and videos about different traditional festivals around the world;5. Review the common assimilation phenomenon in English phonetics, can distinguish the assimilated phonemes in the natural language flow, and consciously use the assimilation skill in oral expression. Importance:1. Guide students to pay attention to the attitude of the speaker in the process of listening, and identify the relationship between the characters;2. Inspire students to use topic words to describe the festival activities based on their background knowledge. Difficulties:In the process of listening to the correct understanding of the speaker's attitude, accurately identify the relationship between the characters.

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。