提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

初中道德與法治七年級上冊師長情誼4作業(yè)設計

  • 北師大初中數學九年級上冊一元二次方程2教案

    北師大初中數學九年級上冊一元二次方程2教案

    三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)

  • 北師大版初中數學九年級上冊相似多邊形說課稿

    北師大版初中數學九年級上冊相似多邊形說課稿

    五、說課件設計及板書隨著教育現代化的發(fā)展,多媒體課件在課堂中輔助教師授課,幫助學生練習,已成為非常重要的教學輔助工具之一。在本節(jié)課的授課過程中,本人也使用了多媒體教學課件。課件在設計上遵循實用性原則、輔助性原則、創(chuàng)新性原則,緊緊圍繞教學目標,服務于課堂教學,設計科學合理,制作精美細致;課件的有效使用很好地優(yōu)化了課堂,極大地擴充了容量,有力地突出了重點,輕松地化解了難點;使學生學習興趣濃郁,使教學效率大大提高;特別是在演示多邊形對應角相等的設計,使這一教學環(huán)節(jié)變得更直觀、更高效、更方便,讓學生輕松地進行探究,很好地保護了學生的學習熱情,方便了教師的策略實現。在授課過程中,我又不是完全依賴于多媒體課件,而成了課件反映員;我充分發(fā)揮教師的主導作用,合理地利用黑板板書有關內容,靈活動配合多媒體課件為學生呈現有關知識點,以彌補課件的不足。

  • 北師大版初中數學九年級上冊相似三角形的判定說課稿

    北師大版初中數學九年級上冊相似三角形的判定說課稿

    (四)提高應用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設計意圖:訓練學生靈活運用知識的能力(五)小結反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似. 2、在找對應角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應角的方法:①已知角相等;②已知角度計算得出相等的對應角;③公共角;④對頂角;⑤同角的余(補)角相等.

  • 北師大版初中數學九年級上冊一元二次方程的應用說課稿

    北師大版初中數學九年級上冊一元二次方程的應用說課稿

    (三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結果有何影響?(四)本課小結列方程解應用題的一般步驟:1、 審題:分析相關的量2、 設元:把相關的量符號化,設定一個量為X,并用含X的代數式表示相關的量3、 列方程:把量的關系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數人物,而立之年督東吳,早逝英年兩位數,十位恰小個位三,個位平方與壽符,哪位學子算得快,多少年華屬周瑜?本題強調對古文化詩詞的閱讀理解,貫通數學的實際應用。有兩種解題思路:枚舉法和方程法。

  • 北師大初中數學九年級上冊反比例函數的圖象1教案

    北師大初中數學九年級上冊反比例函數的圖象1教案

    解:(1)∵點(1,5)在反比例函數y=kx的圖象上,∴5=k1,即k=5,∴反比例函數的解析式為y=5x.又∵點(1,5)在一次函數y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數的解析式為y=3x+2;(2)由題意,聯立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于   第一、三象限內當k<0時,兩支曲線分別位于   第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數的三種表示方法及相互轉換,對函數進行認識上的整合,逐步明確研究函數的一般要求.反比例函數的圖象具體展現了反比例函數的整體直觀形象,為學生探索反比例函數的性質提供了思維活動的空間.

  • 北師大初中數學九年級上冊反比例函數的性質1教案

    北師大初中數學九年級上冊反比例函數的性質1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數y=kx的圖象經過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據函數圖象所在位置或函數的增減性確定k的符號.三、板書設計反比例函數的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數圖象中比例系數k的幾何意義通過對反比例函數圖象的全面觀察和比較,發(fā)現函數自身的規(guī)律,概括反比例函數的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數學學習活動中,增強他們對數學學習的好奇心與求知欲.

  • 北師大初中數學九年級上冊反比例函數的應用1教案

    北師大初中數學九年級上冊反比例函數的應用1教案

    因為反比例函數的圖象經過點A(1.5,400),所以有k=600.所以反比例函數的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數的知識解決實際問題時,要善于發(fā)現實際問題中變量之間的關系,從而進一步建立反比例函數模型.三、板書設計反比例函數的應用實際問題與反比例函數反比例函數與其他學科知識的綜合經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題的過程,提高運用代數方法解決問題的能力,體會數學與現實生活的緊密聯系,增強應用意識.通過反比例函數在其他學科中的運用,體驗學科整合思想.

  • 北師大初中數學九年級上冊正方形的判定2教案

    北師大初中數學九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯系與區(qū)別,體驗事物之間是相互聯系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

  • 北師大初中數學九年級上冊正方形的判定1教案

    北師大初中數學九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數學九年級上冊簡單圖形的三視圖1教案

    北師大初中數學九年級上冊簡單圖形的三視圖1教案

    故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數.三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經驗,發(fā)展學生的動手實踐能力、數學思考能力和空間觀念.

  • 北師大初中數學九年級上冊簡單圖形的三視圖2教案

    北師大初中數學九年級上冊簡單圖形的三視圖2教案

    教學目標:1.經歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉化。3.會根據三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設計一、實物觀察、空間想像設置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?

  • 北師大初中數學九年級上冊利用兩角判定三角形相似2教案

    北師大初中數學九年級上冊利用兩角判定三角形相似2教案

    合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學生練習:1. 討論隨堂練 習第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習第2題六、小結本節(jié)主要學習了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):

  • 北師大初中數學九年級上冊利用三邊判定三角形相似1教案

    北師大初中數學九年級上冊利用三邊判定三角形相似1教案

    同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結:(1)各個圖形中的三角形均為格點三角形,可以根據勾股定理求出各邊的長,然后根據三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學生已學的知識入手,通過設置問題,引導學生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯系,體會事物間一般到特殊、特殊到一般的關系.讓學生經歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生與他人交流、合作的意識和品質.

  • 北師大初中數學九年級上冊利用三邊判定三角形相似2教案

    北師大初中數學九年級上冊利用三邊判定三角形相似2教案

    (一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.

  • 北師大初中數學九年級上冊利用相似三角形測高2教案

    北師大初中數學九年級上冊利用相似三角形測高2教案

    [想一想]同學們經歷了上述三種方法,你還能想出哪些測量旗桿高度的方法?你認為最優(yōu)化的方法是哪種?思路點拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測出影子的長度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時,再量旗桿的影子,此時旗桿的影子長度就是這個旗桿的高度.2、可以采用立一個已知長度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長度根據線段成比例來進行計算.3、拿一根知道長度的直棒,手臂伸直,不斷調整自己的位置,使直棒剛好完全擋住旗桿,量出此時人到旗桿的距離、人手臂的長度和棒長,就可以利用三角形相似來進行計算.等等.第四環(huán)節(jié) 課堂小結1、本節(jié)課你學到了哪些知識?2、在運用科學知識進行實踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對自己的表現滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉

  • 北師大初中數學九年級上冊平行線分線段成比例1教案

    北師大初中數學九年級上冊平行線分線段成比例1教案

    證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截,   所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數學活動的經驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.

  • 北師大初中數學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數學九年級上冊一元二次方程的解及其估算1教案

    方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發(fā)現和創(chuàng)新的能力.

  • 北師大初中數學九年級上冊線段的比和成比例線段1教案

    北師大初中數學九年級上冊線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數的第四比例項,也可能不是前三個數的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數成比例,則應滿足其中兩個數的比等于另外兩個數的比,也可轉化為其中兩個數的乘積恰好等于另外兩個數的乘積.

  • 北師大初中數學九年級上冊線段的比和成比例線段2教案

    北師大初中數學九年級上冊線段的比和成比例線段2教案

    (三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

上一頁123...242526272829303132333435下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。