
這樣讓學(xué)生的想象建立在一定的表象基礎(chǔ)上,不是憑空去想像。學(xué)生經(jīng)歷了猜測(cè)、分析推理,最后再實(shí)物驗(yàn)證的過(guò)程。同時(shí),發(fā)展了學(xué)生的空間想像力和思維能力。)我繼續(xù)追問(wèn):你們能不能想出一個(gè)好辦法讓大家知道這究竟是什么物體嗎?這一富有挑戰(zhàn)性的問(wèn)題,激發(fā)了學(xué)生積極主動(dòng)的去思維。從而探究出解決問(wèn)題的方法是還要知道另一個(gè)面或兩個(gè)面的形狀。2、有了練習(xí)八第2題做鋪墊,再小組合作完成39頁(yè)“做一做”就很容易了,這樣也體現(xiàn)了知識(shí)出現(xiàn)的層次性。)為了幫助學(xué)生把零散的知識(shí)進(jìn)行歸納梳理,同時(shí)培養(yǎng)學(xué)生從不同角度欣賞他人的良好心態(tài)。接下來(lái)我對(duì)應(yīng)用部分進(jìn)行了小結(jié):我們通過(guò)觀察發(fā)現(xiàn)從同一個(gè)方向觀察不同形狀的立體圖形,得到的形狀也可能是相同的。因此,我們不能只根據(jù)一個(gè)方向看到的形狀就確定是什么立體圖形,只有把不同方向看到的形狀進(jìn)行綜合,才能進(jìn)行正確的判斷。我們要全面了解一件事物或一個(gè)人也要懂得從不同的角度去觀察、思考,不能片面的看待。

《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。只是在學(xué)生需要時(shí)給予恰當(dāng)?shù)膸椭!蓖ㄟ^(guò)不同形式的習(xí)題幫助學(xué)生掌握新知。進(jìn)一步突出本節(jié)課的重難點(diǎn)。尤其是創(chuàng)新題,1、編兩個(gè)不同的方程,使方程的解都是ⅹ=6,2、在□中填入合適的數(shù),使等式成立。具有一定的挑戰(zhàn)性.只有當(dāng)自己的觀點(diǎn)與集體不一致時(shí),才會(huì)產(chǎn)生要證實(shí)自己思想的欲望,從而激活學(xué)生思維的火花.但是提出挑戰(zhàn)并不意味著要難倒學(xué)生,而是要激勵(lì)學(xué)生在學(xué)習(xí)的過(guò)程中不斷地去獲得成功的體驗(yàn).學(xué)生是學(xué)習(xí)的主體,只有通過(guò)學(xué)生自身的”再創(chuàng)造”活動(dòng),才能納入其認(rèn)知結(jié)構(gòu)中,才可能成為有效的知識(shí). 在教與學(xué)的活動(dòng)中,有老師的組織、參與和指導(dǎo),有同伴的合作、交流與探索。 “授之以魚(yú),不如授之以漁。”雖只有一字只差,卻是兩種截然不同的教育理念。我選擇后者。這樣既培養(yǎng)了孩子們分析、推理能力和思維的靈活性,又為學(xué)生的新知建構(gòu)拓展出更大的空間!

《較復(fù)雜的小數(shù)乘法》是第九冊(cè)第一單元《小數(shù)的乘法和除法》的第三節(jié)。本 節(jié)課的教學(xué)內(nèi)容是教科書第3頁(yè)的例3、例4。這一教材是在學(xué)生學(xué)習(xí)了小數(shù)乘法的意義(小數(shù)乘以整數(shù)、一個(gè)數(shù)乘以小數(shù))、小數(shù)乘法的計(jì)算法則以及小數(shù)點(diǎn)位置 移動(dòng)引起小數(shù)大小的變化的基礎(chǔ)上進(jìn)行教學(xué)的,它是小數(shù)乘法計(jì)算法則的引伸和補(bǔ)充,同時(shí)也是學(xué)生今后進(jìn)一步學(xué)習(xí)小數(shù)四則混合運(yùn)算的基礎(chǔ)。本節(jié)課 的教學(xué)目的是:1、使學(xué)生進(jìn)一步掌握小數(shù)乘法的計(jì)算法則,懂得在點(diǎn)積的小數(shù)點(diǎn)時(shí),乘得的積的小數(shù)位數(shù)不夠的,要在前面用0補(bǔ)足;2、使學(xué)生初步掌握“當(dāng)乘 數(shù)比1小時(shí),積比被乘數(shù)??;當(dāng)乘數(shù)比1大時(shí),積比被乘數(shù)大”;3、培養(yǎng)學(xué)生的計(jì)算能力,自學(xué)能力和概括能力。本節(jié)課的教學(xué)重點(diǎn)是:讓學(xué)生掌握在定積的小數(shù) 時(shí),位數(shù)不夠的會(huì)用0補(bǔ)足。

如通過(guò)數(shù)方格的方法求出三角形面積,讓學(xué)生用兩個(gè)三角形拼擺。一方面啟發(fā)學(xué)生設(shè)法把研究的圖形轉(zhuǎn)化為已經(jīng)會(huì)計(jì)算面積的圖形,另一方面主動(dòng)探索所研究的圖形與已學(xué)的預(yù)先之間有什么樣的聯(lián)系,從而找出面積的計(jì)算方法,而不是把計(jì)算公式直接告訴學(xué)生。這樣,既使學(xué)生在理解的基礎(chǔ)上掌握三角形面積計(jì)算公式,印象深刻,又培養(yǎng)了學(xué)生的思維能力,動(dòng)手操作能力,發(fā)展了空間觀念。5、教材重點(diǎn)、難點(diǎn)和關(guān)鍵本節(jié)教學(xué)內(nèi)容的重點(diǎn)是掌握三角形面積的計(jì)算公式;難點(diǎn)是理解三角形面積公式的推導(dǎo)過(guò)程;關(guān)鍵是通過(guò)操作實(shí)驗(yàn),使學(xué)生明確每個(gè)三角形的面積是等底等高的平行四邊形面積一半。在教學(xué)過(guò)程中注意以下幾點(diǎn),重點(diǎn)難點(diǎn)問(wèn)題就迎刃而解。⑴ 加強(qiáng)學(xué)生動(dòng)手操作,通過(guò)三次對(duì)兩個(gè)完全相同的直角三角形、銳角三角形、鈍角三角形的拼擺,引導(dǎo)學(xué)生弄清三角形面積與平行四邊形面積關(guān)系,啟發(fā)學(xué)生探索三角形面積的計(jì)算方法。

1.?dāng)?shù)字編碼越來(lái)越重要,了解編碼的含義,會(huì)給人們的生活、工作帶來(lái)很多的便利。公安機(jī)關(guān)常常利用一些編碼偵破案件。請(qǐng)同學(xué)們看個(gè)短片,仔細(xì)觀察,你能找出對(duì)破案有用的線索并說(shuō)出理由嗎?生答。是的,公安人員根據(jù)這些線索很快將犯罪嫌疑人抓獲。2.運(yùn)用數(shù)字或符合來(lái)描述事物可以更簡(jiǎn)潔準(zhǔn)確??吹竭@個(gè)號(hào)碼不用知道名字就能找到這個(gè)人。首先請(qǐng)同學(xué)們仔細(xì)想一想,號(hào)碼中要體現(xiàn)哪些方面的內(nèi)容?先自己想再到小組中交流,組長(zhǎng)記錄下討論的結(jié)果。生討論結(jié)束后師實(shí)物出示結(jié)果,追問(wèn):①其他小組還有什么不同意見(jiàn)嗎?集體討論得出結(jié)果:編入入學(xué)時(shí)間、班級(jí)序號(hào)、班級(jí)學(xué)號(hào)、性別等。追問(wèn):②按什么順序編排比較合理呢?生討論得出按入學(xué)時(shí)間、班級(jí)序號(hào)、班級(jí)學(xué)號(hào)、性別的順序。其次學(xué)生給自己編號(hào)碼,師實(shí)物出示提問(wèn):看到這個(gè)號(hào)碼,你能找到這個(gè)人嗎?生根據(jù)號(hào)碼找到這個(gè)人。

第三個(gè)層次,是通過(guò)師生互動(dòng),以身份證號(hào)碼為例,初步了解蘊(yùn)含的一些簡(jiǎn)單信息和編碼的含義;通過(guò)小組對(duì)自己帶來(lái)的身份證號(hào)碼進(jìn)行觀察、比較、猜測(cè)來(lái)探索數(shù)字編碼的簡(jiǎn)單方法;通過(guò)連線、判斷等初步應(yīng)用,進(jìn)一步鞏固數(shù)字編碼的簡(jiǎn)單方法。第四個(gè)層次,是通過(guò)學(xué)生互動(dòng)交流自己的學(xué)號(hào),初步體驗(yàn)編碼的過(guò)程。在整個(gè)教學(xué)中,教師不束縛學(xué)生的手腳,而讓學(xué)生充分談?wù)撍{(diào)查、了解到的每一個(gè)信息,為學(xué)生的發(fā)展提供充分的土壤和水分,讓他們自己發(fā)揮想象:“從身份證號(hào)碼中你能獲得哪些信息呢?”“你能給自己編一個(gè)學(xué)號(hào)嗎?”問(wèn)題逐層遞進(jìn),使學(xué)生思維上臺(tái)階,也使不同層次學(xué)生得到不同的發(fā)展,營(yíng)造一個(gè)培養(yǎng)學(xué)生創(chuàng)新思維的空間。這樣做可以使學(xué)生真正成為知識(shí)的探索者、發(fā)現(xiàn)者和創(chuàng)造者,從而使學(xué)生保持一種經(jīng)久不衰的探究心理,形成勇于探索、勇于創(chuàng)新的科學(xué)精神,是促使學(xué)生可持續(xù)發(fā)展的一種教學(xué)活動(dòng)。

8、應(yīng)用公式,嘗試計(jì)算梯形面積(出示一個(gè)基本圖形讓學(xué)生計(jì)算)〈這一環(huán)節(jié)意在讓學(xué)生主動(dòng)參與到數(shù)學(xué)活動(dòng)中,親自去體驗(yàn),讓學(xué)生運(yùn)用自己已有的知識(shí),大膽提出假想,共同探討,互相驗(yàn)證,更強(qiáng)烈地激發(fā)學(xué)生探究學(xué)習(xí)的興趣,更全面、更方便地揭示新舊知識(shí)之間的聯(lián)系。這種讓學(xué)生在活動(dòng)中發(fā)現(xiàn)、活動(dòng)中體驗(yàn)、活動(dòng)中發(fā)散、活動(dòng)中發(fā)展的過(guò)程,真真正正地體現(xiàn)了以人的發(fā)展為本的教育理念?!担ㄈ⑸罨柟?、學(xué)習(xí)例1(1)、借助教具演示,理解“橫截面”的含義。(2)、弄清渠口、渠底、渠深各是梯形的什么?(3)、學(xué)生嘗試計(jì)算橫截面積?!挫柟绦轮钦n堂教學(xué)中不可缺少的一個(gè)過(guò)程,這一環(huán)節(jié)是為了將學(xué)生的學(xué)習(xí)積極性再次推向高潮,能更好地運(yùn)用公式計(jì)算梯形面積,從中培養(yǎng)了學(xué)生解決簡(jiǎn)單實(shí)際問(wèn)題的能力?!?/p>

各位評(píng)委:大家好!今天我說(shuō)課的內(nèi)容是人教版五年級(jí)上冊(cè)第一單元《小數(shù)乘法》的第二課時(shí)小數(shù)乘小數(shù)(一)說(shuō)教材1、教學(xué)內(nèi)容:P4例3、做一做,P5例4、做一做,P8—9練習(xí)一第5—9、13題。2、教學(xué)目的:1、掌握小數(shù)乘法的計(jì)算法則,使學(xué)生掌握在確定積的小數(shù)位時(shí),位數(shù)不夠的,要在前面用0補(bǔ)足。2、比較正確地計(jì)算小數(shù)乘法,提高計(jì)算能力。3、培養(yǎng)學(xué)生的遷移類推能力和概括能力,以及運(yùn)用所學(xué)知識(shí)解決新問(wèn)題的能力。3、教學(xué)重點(diǎn):小數(shù)乘法的計(jì)算法則。4、教學(xué)難點(diǎn):小數(shù)乘法中積的小數(shù)位數(shù)和小數(shù)點(diǎn)的定位,乘得的積小數(shù)位數(shù)不夠的,要在前面用0補(bǔ)足。(二)說(shuō)教法和學(xué)法本課所用的教學(xué)方法有: 講授法、談話法、討論法、練習(xí)法。 學(xué)法有:自學(xué)法,小組合作學(xué)習(xí)的方法,遷移類推概括法,歸納總結(jié)法。

2、試做例題,掌握轉(zhuǎn)化方法明確轉(zhuǎn)化原理后,讓學(xué)生試算例題。在試做的基礎(chǔ)上引導(dǎo)學(xué)生進(jìn)行觀察比較,抽象出轉(zhuǎn)化時(shí)小數(shù)點(diǎn)的移位方法,最后概括總結(jié)出移位的法則。具體做法如下:1、我認(rèn)為小數(shù)除法如果按照教材按部就班教學(xué)有點(diǎn)不合理的,不利于學(xué)生從整體上把握小數(shù)除法,不利于學(xué)生對(duì)知識(shí)的建構(gòu)。因此,我選擇了重組教材。(把例5例6有機(jī)的結(jié)合在一起的同時(shí)也新增加了一個(gè)例題,那就是被除數(shù)小數(shù)位數(shù)比除數(shù)的小數(shù)位數(shù)多)。例5、例6和新增加例題的教學(xué),引導(dǎo)學(xué)生概括總結(jié)出轉(zhuǎn)化時(shí)移位的方法,同時(shí)在此基礎(chǔ)上歸納出除數(shù)是小數(shù)的除法計(jì)算法則。在得出計(jì)算法則后,還要注意強(qiáng)調(diào):(1)小數(shù)點(diǎn)向右移動(dòng)的位數(shù)取決于除數(shù)的小數(shù)位數(shù),而不由被除數(shù)的小數(shù)位數(shù)確定。(2)整數(shù)除法中,兩個(gè)數(shù)相除的商不會(huì)大于被除數(shù),而在小數(shù)除法中,當(dāng)除數(shù)小于1時(shí),商反而比被除數(shù)大。

除數(shù)是整數(shù)的小數(shù)除法的計(jì)算步驟和試商方法與整數(shù)除法基本相同。它是在整數(shù)除法的基礎(chǔ)上進(jìn)行教學(xué)的。又是學(xué)生以后學(xué)習(xí)小數(shù)除法的基礎(chǔ),必須溝通小數(shù)除法和整數(shù)除法的聯(lián)系,抓住新舊知識(shí)的連接點(diǎn),緊密結(jié)合現(xiàn)實(shí)情境,展示學(xué)生對(duì)小數(shù)除法計(jì)算方法的探究過(guò)程,突出計(jì)算方法的教學(xué),在掌握計(jì)算方法的同時(shí)更要理解算理。二.教學(xué)目標(biāo):1.通過(guò)自主探究、合作交流,理解小數(shù)除以整數(shù)的計(jì)算方法。2.正確地進(jìn)行小數(shù)除以整數(shù)的計(jì)算,并能解決簡(jiǎn)單的實(shí)際問(wèn)題。3.培養(yǎng)學(xué)生比較、分析和歸納等思維能力;以及類比、遷移的學(xué)習(xí)能力。4.通過(guò)學(xué)習(xí)活動(dòng),培養(yǎng)積極的學(xué)習(xí)態(tài)度,樹(shù)立學(xué)好數(shù)學(xué)的信心。5.讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。重點(diǎn)難點(diǎn):正確地進(jìn)行小數(shù)除以整數(shù)的計(jì)算,并能解決簡(jiǎn)單的實(shí)際問(wèn)題是本課的重點(diǎn),本課的難點(diǎn)是理解小數(shù)除以整數(shù)的計(jì)算方法,理解小數(shù)點(diǎn)為什么要對(duì)齊。

在學(xué)習(xí)本課內(nèi)容以前,學(xué)生已經(jīng)系統(tǒng)地學(xué)習(xí)了整數(shù)四則混合運(yùn)算和小數(shù)四則計(jì)算,為本節(jié)課內(nèi)容的學(xué)習(xí)打下了基礎(chǔ),由于小數(shù)四則混合運(yùn)算的運(yùn)算順序同整數(shù)四則混合運(yùn)算的運(yùn)算順序完全一樣,針對(duì)這一點(diǎn),本課教學(xué)確定的教學(xué)目的是使學(xué)生熟記小數(shù)四則混合運(yùn)算順序,提高計(jì)算能力。使學(xué)生熟練地掌握小數(shù)四則混合運(yùn)算的運(yùn)算順序,正確、迅速地進(jìn)行小數(shù)四則混合式題的運(yùn)算,是本課的教學(xué)重點(diǎn)。教學(xué)難點(diǎn)是:1.能否正確把握運(yùn)算順序。2.能否正確標(biāo)明根據(jù)以上教學(xué)目的,為了更好地突出重點(diǎn),突破難點(diǎn),在教學(xué)中遵循大綱的要求,從簡(jiǎn)單入手。例1是最簡(jiǎn)單的兩步計(jì)算題,讓學(xué)生熟悉一下運(yùn)算順序。再過(guò)渡到較復(fù)雜的問(wèn)題。例2是三步計(jì)算帶小括號(hào)的較復(fù)雜的四則混算題,在運(yùn)算過(guò)程中出現(xiàn)了除不盡的情況,應(yīng)說(shuō)明計(jì)算過(guò)程中,當(dāng)除得的商超過(guò)兩位小數(shù)時(shí),一般只需保留兩位小數(shù),再進(jìn)行計(jì)算。最后進(jìn)入到教學(xué)重點(diǎn)、難點(diǎn)階段。

一、創(chuàng)設(shè)情境,引入新課。課開(kāi)始,首先通過(guò)談話問(wèn)學(xué)生“你們喜歡玩游戲嗎?”隨后呈現(xiàn)例題的情境圖,讓學(xué)生在觀察中清楚的知道袋中有4個(gè)紅球和2個(gè)紅球。然后教師揭示摸球游戲的規(guī)則:每次任意摸一個(gè)球,摸好后放回袋中,一共摸30次。摸到紅球的次數(shù)多算小明贏;摸到黃球的次數(shù)多算小玲贏。接著讓學(xué)生猜一猜誰(shuí)贏得可能性大一些。預(yù)設(shè)學(xué)生都會(huì)猜是小明贏得可能性大一些。然后組織學(xué)生在小組里進(jìn)行摸球?qū)嶒?yàn),并把摸的結(jié)果記錄在書本例題的第一個(gè)記錄表中,驗(yàn)證剛才的猜想。在學(xué)生操作完之后,讓學(xué)生明確小明贏得可能性大一些。接著引導(dǎo)學(xué)生產(chǎn)生質(zhì)疑:“這樣的游戲公平嗎?為什么?”引導(dǎo)學(xué)生小結(jié):口袋中紅球的個(gè)數(shù)比較多,所以每次任意摸一個(gè)球,摸到紅球的可能性要大,最后小明贏得可能性也就相應(yīng)地要大一些,這樣摸球的游戲規(guī)則是不公平的。在此基礎(chǔ)上揭示課題并板書:游戲規(guī)則的公平性。

一、說(shuō)教材《中國(guó)美食》是統(tǒng)編語(yǔ)文小學(xué)二年級(jí)下冊(cè)第三組識(shí)字單元第四篇課文。課主要通過(guò)各種各樣的美食圖片,讓學(xué)生了解中國(guó)美食,通過(guò)認(rèn)識(shí)這些美食從而學(xué)習(xí)生字。通過(guò)認(rèn)識(shí)這些色香味俱全的美食,認(rèn)識(shí)中國(guó)的美食化,增強(qiáng)民族自豪感,培養(yǎng)學(xué)生熱愛(ài)家鄉(xiāng)、熱愛(ài)祖國(guó)的感情。 本單元為識(shí)字單元,重在培養(yǎng)學(xué)生的識(shí)字興趣與能力。依據(jù)單元特點(diǎn)及新課標(biāo)要求,低年級(jí)學(xué)生能借助漢語(yǔ)拼音認(rèn)讀漢字,喜歡學(xué)習(xí)漢字,有主動(dòng)識(shí)字的愿望,學(xué)會(huì)用普通話正確、流利地朗讀課問(wèn)。二、說(shuō)學(xué)情二年級(jí)學(xué)生已經(jīng)有了一定的知識(shí)基礎(chǔ),并掌握了不少的識(shí)字方法,因此生字學(xué)習(xí)障礙相對(duì)而言較少。但他們的生活經(jīng)驗(yàn)畢竟有限,對(duì)文中圖片中的菜品名稱不是全都了解,菜肴也不全都吃過(guò)。教學(xué)時(shí)要求學(xué)生認(rèn)知菜肴名稱,了解菜肴,通過(guò)學(xué)習(xí)增強(qiáng)學(xué)生對(duì)中國(guó)美食的喜愛(ài),對(duì)祖國(guó)的熱愛(ài)之情。

Lorem ipsum dolor: sit ametconsectet gelit. it ellentesque eleife ornare ipsun enunc pulvinati ncidunt.quis pul vinar mellu Lorem ipsum dolor: sit amet consectet gelit. itellentesque eleife ornare ipsun enunc pulvinati ncidunt. quis pul vinar mellu。Loremipsum dolor: sit amet consectet gelit. it ellentesque eleife ornare ipsun enuncpulvinati ncidunt. quis pul vinar mellu.

已知一水壩的橫斷面是梯形ABCD,下底BC長(zhǎng)14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長(zhǎng)為46m,求它的上底的長(zhǎng)(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過(guò)點(diǎn)A作AE⊥BC于E,過(guò)點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過(guò)點(diǎn)A作AE⊥BC,過(guò)點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長(zhǎng)約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問(wèn)題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來(lái)解決問(wèn)題,我們一定要把知識(shí)融會(huì)貫通,在解決問(wèn)題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問(wèn)題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.

一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。