
方法總結:判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)

第一環(huán)節(jié):回顧引入活動內容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎.教學效果:學生舉手發(fā)言,提問個別學生.第二環(huán)節(jié):探索命題的結構活動內容:① 探討命題的結構特征觀察下列命題,發(fā)現(xiàn)它們的結構有什么共同特征?(1)如果兩個三角形的三條邊對應相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結命題的結構特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結論.

一、情境導入神舟十號是中國神舟號系列飛船之一,主要由推進艙(服務艙)、返回艙、軌道艙組成.神舟十號在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時38分02.666秒發(fā)射,由長征二號F改進型運載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號進行對接.6月26日回歸地球.要讀懂這段報導,你認為要知道哪些名稱和術語的含義?二、合作探究探究點一:定義 下列語句屬于定義的是()A.明天是晴天B.長方形的四個角都是直角C.等角的補角相等D.平行四邊形是兩組對邊分別平行的四邊形解析:作出正確選擇的關鍵是理解定義的含義.A是對天氣的預測,B是描述長方形的性質,C是描述補角的性質.只有D符合定義的概念.故選D.方法總結:定義指的是對術語和名稱的含義的描述,是對一個事物區(qū)分于其他事物的本質特征的描述,而不是對其性質的判斷.

一、情境導入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術平方根的概念【類型一】 求一個數(shù)的算術平方根求下列各數(shù)的算術平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術平方根的定義求非負數(shù)的算術平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術平方根是8;(2)∵(32)2=94=214,∴214的算術平方根是32;(3)∵0.62=0.36,∴0.36的算術平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術平方根是3.方法總結:(1)求一個數(shù)的算術平方根時,首先要弄清是求哪個數(shù)的算術平方根,分清求81與81的算術平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術平方根十分有用.

2.法解二元一次方程組,是提升學生求解二元一次方程的基本技能課,在例題的設置上充分體現(xiàn)化歸思想.2.在學習二元一次方程組的解法中,關鍵是領會其本質思想——消元,體會“化未知為已知”的化歸思想.因而在教學過程中教師通過對問題的創(chuàng)設,鼓勵學生去觀察方程的特點,在過手訓練中提高學生的解答正確率和表達規(guī)范性,提升學生學會數(shù)學的信心,激發(fā)學習數(shù)學的興趣.3.通過精心設計的問題,引導學生在已有知識的基礎上,自己比較、分析得出二元一次方程組的解法,在鞏固訓練活動中,加深學生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉化為一元一次方程求解,這樣的轉化,不僅有助于學生掌握知識、技能和方法,提高學習效率,而且還加深了對數(shù)學中通性和通法的認識,體會學習數(shù)學和研究數(shù)學的規(guī)律,提升數(shù)學思維能力.

已知xm-n+1y與-2xn-1y3m-2n-5是同類項,求m和n的值.解析:根據(jù)同類項的概念,可列出含字母m和n的方程組,從而求出m和n.解:因為xm-n+1y與-2xn-1y3m-2n-5是同類項,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當m=4,n=3時,xm-n+1y與-2xn-1y3m-2n-5是同類項.方法總結:解這類題,就是根據(jù)同類項的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設計用加減法解二元一次方程組的步驟:①變形,使某個未知數(shù)的系數(shù)絕對值相等;②加減消元;③解一元一次方程;④求另一個未知數(shù)的值,得方程組的解.進一步理解二元一次方程組的“消元”思想,初步體會數(shù)學研究中“化未知為已知”的化歸思想.選擇恰當?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學生的觀察、分析問題的能力.

1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經過分析、綜合去掉非本質特征,保持本質屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質特征.算術平方根的本質特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術平方根也必須是正的.當然零的算術平方根是零.

第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y得出結論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內,又如何確定一個點的位置呢?請同學們根據(jù)生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內,確定一個座位一般需要幾個數(shù)據(jù)?結論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?

在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;

例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?

1.知識目標:在回顧與思考中建立本章的知識框架圖,復習有關定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標:進一步體會證明的必要性,發(fā)展學生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結合實例體會反證法的含義;提高學生用規(guī)范的數(shù)學語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學學習活動,對數(shù)學的證明產生好奇心和求知欲,培養(yǎng)學生合作交流的能力,以及獨立思考的良好學習習慣.重點:通過例題的講解和課堂練習對所學知識進行復習鞏固難點:本章知識的綜合性應用?!練w納總結】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質:①三個內角都等于60度,三條邊都相等②具有等腰三角形的一切性質。

【類型二】 根據(jù)數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結:本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.

解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結:本題是線段垂直平分線的性質和角平分線的性質的綜合,掌握它們的適用條件和表示方法是解題的關鍵.三、板書設計1.角平分線的性質定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.

2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設計

解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結:因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.

若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質基本性質:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經歷比例的性質的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.

方法總結:作平移圖形時,找關鍵點的對應點是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質一個圖形和它經過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調學生自主探索和合作交流,學生經歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.

解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結:本題是利用旋轉的特征:旋轉前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉作圖2.旋轉圖形的應用教學過程中,強調學生自主探索和合作交流,經歷觀察、歸納和動手操作,利用旋轉的性質作圖.

方法總結:垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結:解題的關鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.

一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。