
1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()

A、B兩碼頭相距140km,一艘輪船在其間航行,順?biāo)叫杏昧?h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時(shí)間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順?biāo)伲届o速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時(shí)間”列方程組.三、板書設(shè)計(jì)“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學(xué)思想方法是數(shù)學(xué)學(xué)習(xí)的靈魂.教學(xué)中注意關(guān)注蘊(yùn)含其中的數(shù)學(xué)思想方法(如化歸方法),介紹化歸思想及其運(yùn)用,既可提高學(xué)生的學(xué)習(xí)興趣,開闊視野,同時(shí)也提高學(xué)生對(duì)數(shù)學(xué)思想的認(rèn)識(shí),提升解題能力.

由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時(shí)要正確區(qū)分,如利用列表法求概率時(shí),不重復(fù)在列表中有空格,重復(fù)在列表中則不會(huì)出現(xiàn)空格.三、板書設(shè)計(jì)用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識(shí).在活動(dòng)中進(jìn)一步發(fā)展學(xué)生的合作交流意識(shí),提高學(xué)生對(duì)所研究問題的反思和拓展的能力,逐步形成良好的反思意識(shí).鼓勵(lì)學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識(shí).

由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時(shí)要正確區(qū)分,如利用列表法求概率時(shí),不重復(fù)在列表中有空格,重復(fù)在列表中則不會(huì)出現(xiàn)空格.三、板書設(shè)計(jì)用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識(shí).在活動(dòng)中進(jìn)一步發(fā)展學(xué)生的合作交流意識(shí),提高學(xué)生對(duì)所研究問題的反思和拓展的能力,逐步形成良好的反思意識(shí).鼓勵(lì)學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識(shí).

∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡(jiǎn)單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.

易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長(zhǎng),當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

合探2 與同伴合作,兩個(gè)人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時(shí),∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個(gè)三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個(gè)三角形相似.這個(gè)定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點(diǎn),DE∥BC,AB= 7,AD=5,DE=10,求B C的長(zhǎng)。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個(gè)三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個(gè)銳角相等的兩個(gè)直角三角形是否相似?為什么?2.自己獨(dú)立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個(gè)定理.七、作業(yè):

(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對(duì)應(yīng)于相似三 角形的判定的判定定理1,SAS對(duì)應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對(duì)應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個(gè)三 角形相似.(三)例題學(xué)習(xí)例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個(gè)三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習(xí)四、小結(jié)本節(jié)學(xué) 習(xí)了相似三角形的判定定理3,使用時(shí)一定要注意它使用的條件.

[想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測(cè)量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點(diǎn)拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測(cè)出影子的長(zhǎng)度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時(shí),再量旗桿的影子,此時(shí)旗桿的影子長(zhǎng)度就是這個(gè)旗桿的高度.2、可以采用立一個(gè)已知長(zhǎng)度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長(zhǎng)度根據(jù)線段成比例來進(jìn)行計(jì)算.3、拿一根知道長(zhǎng)度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時(shí)人到旗桿的距離、人手臂的長(zhǎng)度和棒長(zhǎng),就可以利用三角形相似來進(jìn)行計(jì)算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識(shí)?2、在運(yùn)用科學(xué)知識(shí)進(jìn)行實(shí)踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對(duì)自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉

(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購(gòu)買次品西裝的顧客前來調(diào)換,至少應(yīng)該進(jìn)多少件西裝?六、課堂小結(jié):盡管隨機(jī)事件在每次實(shí)驗(yàn)中發(fā)生與否具有不確定性,但只要保持實(shí)驗(yàn)條件不變,那么這一事件出現(xiàn)的頻率就會(huì)隨著實(shí)驗(yàn)次數(shù)的增大而趨于穩(wěn)定,這個(gè)穩(wěn)定值就可以作為該事件發(fā)生概率的估計(jì)值。七、作業(yè):課后練習(xí)補(bǔ)充:一個(gè)口袋中有12個(gè)白球和若干個(gè)黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計(jì)口袋中黑球的個(gè)數(shù),采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計(jì)口袋中大約有 48 個(gè)黑球。

(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實(shí)驗(yàn)次數(shù)的不斷增加,頻率的變化趨勢(shì)如何?結(jié)論:從上面的試驗(yàn)可以看到:當(dāng)重復(fù)實(shí)驗(yàn)的次數(shù)大量增加時(shí),事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實(shí)驗(yàn),用一個(gè)事件發(fā)生的頻率來估計(jì)這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動(dòng)員投籃5次, 投中4次,能否說該運(yùn)動(dòng)員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計(jì)抽1件襯衣合格的概率是多少?(2)1998年,在美國(guó)密歇根州漢諾城市的一個(gè)農(nóng)場(chǎng)里出生了1頭白色的小奶牛,據(jù)統(tǒng)計(jì),平均出生1千萬頭牛才會(huì)有1頭是白色的,由此估計(jì)出生一頭奶牛為白色的概率為多少?

答:書包單價(jià)92元,隨身聽單價(jià)360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場(chǎng)所有商品打八折銷售,家樂福全場(chǎng)購(gòu)物滿100元返購(gòu)物券30元銷售(不足100元不返券,購(gòu)物券全場(chǎng)通用),但他只帶了400元錢,如果他只在一家購(gòu)買看中的這兩樣物品,你能幫助他選擇在哪一家購(gòu)買嗎?若兩家都可以選擇,在哪一家購(gòu)買更省錢?提示:書包單價(jià)92元,隨身聽單價(jià)360元。2)在人民商場(chǎng)購(gòu)買隨聲聽與書包各一樣需花費(fèi)現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場(chǎng)購(gòu)買。在家樂??上然ìF(xiàn)金360元購(gòu)買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購(gòu)買書包,共花現(xiàn)金360+2=362(元)。因?yàn)?62<400,所以也可以選擇在家樂福購(gòu)買。因?yàn)?62>361.6,所以在人民商場(chǎng)購(gòu)買更省錢。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補(bǔ)充和強(qiáng)調(diào)。)

教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動(dòng)腦思考 探索新知 如圖8-12所示,兩條相交直線的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點(diǎn)的坐標(biāo). 觀察圖8-13,直線、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個(gè)正角,分別為、、、,其中與,與為對(duì)頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時(shí),兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時(shí)稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

由于任何一個(gè)一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對(duì)應(yīng)的觀點(diǎn)考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識(shí):⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個(gè)角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動(dòng)”―――學(xué)生動(dòng)口說,動(dòng)腦想,動(dòng)手做,親身經(jīng)歷知識(shí)發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動(dòng)手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計(jì)力求做到與學(xué)生的生活實(shí)際聯(lián)系緊一點(diǎn),直觀多一點(diǎn),動(dòng)手多一點(diǎn),使學(xué)生興趣高一點(diǎn),自信心強(qiáng)一點(diǎn),使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個(gè)教學(xué)過程中,滲透用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證思想。

解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.

如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對(duì)反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.

∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點(diǎn)Q時(shí)在路燈AD下影子的長(zhǎng)度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對(duì)應(yīng)線段的長(zhǎng)度.三、板書設(shè)計(jì)投影的概念與中心投影投影的概念:物體在光線的照射下,會(huì) 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點(diǎn)光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關(guān)系的活動(dòng)中,體會(huì)立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過在燈光下擺弄小棒、紙片,體會(huì)、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問題、分析問題的能力.

∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。