提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

《媒介信息的辨識(shí)與表達(dá)》說課稿20212022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例4. 用 10 000元購(gòu)買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (1) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (1) 教學(xué)設(shè)計(jì)

    新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價(jià)值會(huì)減少d(d為正常數(shù))萬元.已知這臺(tái)設(shè)備的使用年限為10年,超過10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬元;10年后,該設(shè)備的價(jià)值需小于11萬元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (2) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (2) 教學(xué)設(shè)計(jì)

    二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時(shí),無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計(jì)

    1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教A版高中數(shù)學(xué)必修二總體取值規(guī)律的估計(jì)教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二總體取值規(guī)律的估計(jì)教學(xué)設(shè)計(jì)

    可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。

  • 人教A版高中數(shù)學(xué)必修一簡(jiǎn)單的三角恒等變換教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一簡(jiǎn)單的三角恒等變換教學(xué)設(shè)計(jì)(1)

    四、小結(jié)1.知識(shí):如何采用兩角和或差的正余弦公式進(jìn)行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對(duì)三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識(shí),進(jìn)一步培養(yǎng)學(xué)生的建模意識(shí).五、作業(yè)1. 課時(shí)練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識(shí)要點(diǎn),及運(yùn)用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯(cuò)點(diǎn);

  • 人教A版高中數(shù)學(xué)必修二空間點(diǎn)、直線、平面之間的位置關(guān)系教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二空間點(diǎn)、直線、平面之間的位置關(guān)系教學(xué)設(shè)計(jì)

    9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).

  • 人教版新課標(biāo)高中物理必修2生活中的圓周運(yùn)動(dòng)教案2篇

    人教版新課標(biāo)高中物理必修2生活中的圓周運(yùn)動(dòng)教案2篇

    思考:洗衣機(jī)脫水時(shí)轉(zhuǎn)速高時(shí)容易甩干衣物,還是轉(zhuǎn)速低時(shí)容易甩干衣物?(2) 制作棉花糖的原理內(nèi)筒與洗衣機(jī)的脫水筒相似,里面加入白砂糖,加熱使糖熔化成糖汁。內(nèi)筒高速旋轉(zhuǎn),黏稠的糖汁就做離心運(yùn)動(dòng),從內(nèi)筒壁的小孔飛散出去,成為絲狀到達(dá)溫度較低的外筒,并迅速冷卻凝固,變得纖細(xì)雪白,像一團(tuán)團(tuán)棉花。5.離心現(xiàn)象的防止在水平公路上行駛的汽車,轉(zhuǎn)彎時(shí)所需的向心力是由車輪與路面的靜摩擦力提供的。如果轉(zhuǎn)彎時(shí)速度過大,所需向心力F大于最大靜摩擦力Fmax,汽車將做離心運(yùn)動(dòng)而造成交通事故。因此,在公路彎道處,車輛行駛不允許超過規(guī)定的速度。當(dāng)高速轉(zhuǎn)動(dòng)的砂輪或者飛輪內(nèi)部分子間相互作用力不足以提供所需向心力時(shí),離心運(yùn)動(dòng)就會(huì)使他們破裂,甚至釀成事故。

  • 高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動(dòng)探究型》教案

    高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動(dòng)探究型》教案

    一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國(guó)化的三大理論成果。學(xué)習(xí)本框內(nèi)容對(duì)學(xué)生來講,將有助于他們正確認(rèn)識(shí)馬克思主義,運(yùn)用馬克思主義中國(guó)化的理論成果,分析解決遇到的社會(huì)問題。具有很強(qiáng)的現(xiàn)實(shí)指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識(shí),思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時(shí)期,對(duì)一些社會(huì)現(xiàn)象能主動(dòng)思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級(jí)基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對(duì)馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問題。3.實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動(dòng)中的科學(xué)探索精神和革命批判精神。

  • 人教版高中政治必修4哲學(xué)史上的偉大變革精品教案

    人教版高中政治必修4哲學(xué)史上的偉大變革精品教案

    一、教材分析《哲學(xué)史上的偉大變革》是人教版高中政治必修四第3課第2框的教學(xué)內(nèi)容。二、教學(xué)目標(biāo)1.知識(shí)目標(biāo):馬克思主義哲學(xué)產(chǎn)生的階級(jí)基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源馬克思主義哲學(xué)的基本特征馬克思主義中國(guó)化的重大理論成果2.能力目標(biāo):通過對(duì)馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問題。3.情感、態(tài)度和價(jià)值觀目標(biāo):實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動(dòng)中的科學(xué)探索精神和革命批判精神。三、教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):馬克思主義哲學(xué)的基本特征;馬克思主義中國(guó)化的重大理論成果

  • 人教版高中政治必修4哲學(xué)的基本問題精品教案

    人教版高中政治必修4哲學(xué)的基本問題精品教案

    一、教材分析本框題包括什么是哲學(xué)的基本問題、為什么思維和存在的關(guān)系問題是哲學(xué)的基本問題兩個(gè)目題。第一個(gè)問題:什么是哲學(xué)的基本問題。其邏輯順序是:什么是哲學(xué)的基本問題→哲學(xué)的基本問題所包含的兩方面的內(nèi)容→對(duì)哲學(xué)的基本問題第一方面內(nèi)容的不同回答是劃分唯物主義和唯心主義的標(biāo)準(zhǔn)→對(duì)哲學(xué)的基本問題第二方面內(nèi)容的不同回答是劃分可知論和不可知論的標(biāo)準(zhǔn)。第二個(gè)問題:為什么思維和存在的關(guān)系問題是哲學(xué)的基本問題。其 邏輯順序是:思維和存在的關(guān)系問題是人們?cè)诂F(xiàn)實(shí)生活和實(shí)踐活動(dòng)中遇到的和無法回避的基本問題→思維和存在的關(guān)系問題,是一切哲學(xué)都不能回避的、必須回答的問題→思維和存在的關(guān)系問題,貫穿于哲學(xué)發(fā)展的始終,對(duì)這個(gè)問題的不同回答決定著各種哲學(xué)的基本性質(zhì)和方向,決定著對(duì)其它哲學(xué)問題的回答。 二、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)(1)識(shí)記哲學(xué)的基本問題(2)解釋哲學(xué)的基本問題

  • 人教版高中政治必修4第十二課實(shí)現(xiàn)人生的價(jià)值教案

    人教版高中政治必修4第十二課實(shí)現(xiàn)人生的價(jià)值教案

    有的學(xué)者還指出,要堅(jiān)持集體主義還必須將集體主義的價(jià)值精神與社會(huì)主義市場(chǎng)經(jīng)濟(jì)的要求結(jié)合起來,批判地繼承計(jì)劃經(jīng)濟(jì)時(shí)代倡導(dǎo)的集體主義,合理地對(duì)其進(jìn)行體系結(jié)構(gòu)的調(diào)整和內(nèi)容的更新,形成新的集體主義。與傳統(tǒng)的集體主義相比,這種新的集體主義應(yīng)具有如下兩個(gè)主要特點(diǎn)。其一,強(qiáng)調(diào)集體的出發(fā)點(diǎn)是為了維護(hù)集體成員的正當(dāng)個(gè)人利益。傳統(tǒng)的集體主義具有片面強(qiáng)調(diào)集體至上性、絕對(duì)性的弊端;新的集體主義必須依據(jù)社會(huì)主義市場(chǎng)經(jīng)濟(jì)的現(xiàn)實(shí)要求,將集體應(yīng)當(dāng)對(duì)個(gè)人承擔(dān)的義務(wù)加以科學(xué)的闡釋。真正的集體應(yīng)該維護(hù)各個(gè)集體成員的個(gè)人利益,實(shí)現(xiàn)組成集體的各個(gè)主體的自我價(jià)值。這種新型的集體主義是對(duì)社會(huì)主義市場(chǎng)經(jīng)濟(jì)條件下社會(huì)關(guān)系的真實(shí)反映,既與個(gè)人主義有本質(zhì)區(qū)別,也不同于傳統(tǒng)的集體主義。其二,要體現(xiàn)道德要求的先進(jìn)性與廣泛性的統(tǒng)一。

  • 人教版高中政治必修4第八課唯物辯證法的發(fā)展觀教案

    人教版高中政治必修4第八課唯物辯證法的發(fā)展觀教案

    1973年4月的一天,一名男子站在紐約的街頭,掏出一個(gè)約有兩塊磚頭大的無線電話,并開始通話。這個(gè)人就是手機(jī)的發(fā)明者馬丁,當(dāng)時(shí)他是摩托羅拉公司的工程技術(shù)人員。這是當(dāng)時(shí)世界上第一部移動(dòng)電話。1985年,第一臺(tái)現(xiàn)代意義上的可以商用的移動(dòng)電話誕生。它是將電源和天線放置在一個(gè)盒子里,重量達(dá)3公斤。與現(xiàn)代形狀接近的手機(jī)誕生于1987年,其重量大約750克,與今天僅重60克的手機(jī)相比,像一塊大磚頭。此后,手機(jī)的“瘦身”越來越迅速。1991年,手機(jī)重量為250克左右。1996年秋,r出現(xiàn)了體積為100立方厘米、重量100克的手機(jī)。此后,又進(jìn)一步小型化,輕型化,到1999年就輕到了60克以下。手機(jī)的體積越來越小,但功能卻越來越多。以前的手機(jī)是用來通話的,現(xiàn)在的手機(jī)是用來享受的。今天,手機(jī)可以是相機(jī)、游戲機(jī)、音樂播放器、信用卡、電影院……手機(jī)帶來的不僅僅是通信方式的改變,更是生活方式的變革。

  • 人教版高中政治必修4第二課百舸爭(zhēng)流的思想教案

    人教版高中政治必修4第二課百舸爭(zhēng)流的思想教案

    不可知論是否認(rèn)人們認(rèn)識(shí)世界或徹底改造世界的可能性的哲學(xué)學(xué)說。此概念首先由英國(guó)的赫胥黎(1825—1895)于1869年提出,不可知論的思想在古代就已產(chǎn)生,歐洲近代的主要代表是休謨和康德。其本質(zhì)是把人的感覺看作是主觀和客觀之間的屏障而不是橋梁,不承認(rèn)在感覺之外有確實(shí)可靠的客觀外部世界的存在,不懂得認(rèn)識(shí)過程中本質(zhì)與現(xiàn)象、有限與無限的辯證關(guān)系。對(duì)不可知論最有力的駁斥是實(shí)踐。有時(shí)不可知論一詞也用以專指針對(duì)宗教教義而提出的一種學(xué)說,認(rèn)為上帝是否存在、靈魂是否不朽是不可知的。2.二元論二元論是認(rèn)為世界有兩個(gè)本原的哲學(xué)學(xué)說,與一元論相對(duì)立,它把物質(zhì)和意識(shí)絕對(duì)對(duì)立起來,認(rèn)為物質(zhì)和意識(shí)是兩個(gè)各自獨(dú)立、相互平行發(fā)展著的實(shí)體,誰也不產(chǎn)生誰,誰也不決定誰,都是世界的本原。它的觀點(diǎn)是錯(cuò)誤的:它肯定精神不依賴于物質(zhì)而獨(dú)立存在,這本身就是唯心主義的觀點(diǎn);它雖然承認(rèn)物質(zhì)是獨(dú)立的本原,但在說明物質(zhì)和精神的關(guān)系時(shí),又把精神說成是唯一具有能動(dòng)性的力量,必然倒向唯心主義。主要代表人物是法國(guó)的笛卡兒和德國(guó)的康德。

  • 人教版高中政治必修4第六課求索真理的歷程教案

    人教版高中政治必修4第六課求索真理的歷程教案

    農(nóng)業(yè)科學(xué)的周期是以年為時(shí)間單位,一次實(shí)驗(yàn)就要等到一次花開、結(jié)果。就這樣,幾個(gè)實(shí)驗(yàn)誤導(dǎo)了袁隆平好幾年。這時(shí)登在《參考消息》上的一篇不起眼的文章像給迷途中的袁隆平以當(dāng)頭一棒:克里克、沃森和威爾金斯發(fā)現(xiàn)DNA螺旋結(jié)構(gòu),西方的遺傳學(xué)研究進(jìn)入分子水平?!拔耶?dāng)時(shí)還在那里搞什么無性雜交,糟糕得很”。水稻是自花授粉植物,雄蕊雌蕊都在一朵花里面,雌雄同株,沒有雜種優(yōu)勢(shì)一雜種優(yōu)勢(shì)是生物界的普遍現(xiàn)象,小到細(xì)菌,大到人,近親繁殖的結(jié)果是種群的退化。但是水稻因?yàn)榛ㄐ?,其雜交是當(dāng)時(shí)公認(rèn)的世界難題,設(shè)在馬尼拉的世界水稻研究中心就是因?yàn)槔щy重重,差點(diǎn)關(guān)閉。袁隆平偏不信這個(gè)邪,他突發(fā)靈感:專門培養(yǎng)一種特殊的水稻品種——雄花退化的雄性不育系,沒有自己的花粉,這樣不就可以做到雜種優(yōu)勢(shì)了嗎?于是,漫長(zhǎng)的尋找過程開始了,要找到這樣一株雄花退化而且雜交之后產(chǎn)量猛增的“太監(jiān)”水稻簡(jiǎn)直是大海撈針。

  • 人教版高中政治必修4第七課唯物辯證法的聯(lián)系觀教案

    人教版高中政治必修4第七課唯物辯證法的聯(lián)系觀教案

    2.能力目標(biāo)(1)通過本課的學(xué)習(xí),要求著重培養(yǎng)學(xué)生全面地、聯(lián)系地看問題和分析問題的能力;培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力,以及運(yùn)用所學(xué)知識(shí)分析、處理和解決實(shí)際問題的能力。(2)使學(xué)生初步具有從錯(cuò)綜復(fù)雜的聯(lián)系中認(rèn)識(shí)和發(fā)現(xiàn)事物本質(zhì)的、固有的、內(nèi)在的聯(lián)系的能力,初步學(xué)會(huì)用全面的、聯(lián)系的觀點(diǎn)看問題的能力。(3)使學(xué)生初步具有堅(jiān)持和把握整體與部分辯證關(guān)系的能力,初步具有運(yùn)用系統(tǒng)優(yōu)化的方法安排自己學(xué)習(xí)和生活的能力。在處理問題時(shí),既要看到整體與部分之間的聯(lián)系又要看到它們的區(qū)別,掌握系統(tǒng)優(yōu)化的方法,學(xué)會(huì)運(yùn)用綜合性的思維方式認(rèn)識(shí)事物和處理生活、學(xué)習(xí)和工作中的問題。3.情感、態(tài)度和價(jià)值觀目標(biāo)(1)樹立唯物辯證法的聯(lián)系觀,自覺抵制形而上學(xué)的靜止觀。堅(jiān)持用聯(lián)系的觀點(diǎn)看問題,自覺維護(hù)人類生存的環(huán)境,確信一切以時(shí)間、地點(diǎn)和條件為轉(zhuǎn)移,是我們正確認(rèn)識(shí)和把握事物、在認(rèn)識(shí)世界和改造世界的活動(dòng)中不斷取得成功的關(guān)鍵。

上一頁123...44454647484950
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。