提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版初中數學八年級下冊等腰三角形說課稿2篇

  • 北師大初中九年級數學下冊30°,45°,60°角的三角函數值2教案

    北師大初中九年級數學下冊30°,45°,60°角的三角函數值2教案

    教學目標:1.能利用三角函數概念推導出特殊角的三角函數值.2.在探索特殊角的三角函數值的過程中體會數形結合思想.教學重點:特殊角30°、60°、45°的三角函數值.教學難點:靈活應用特殊角的三角函數值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數量關系?如果∠A=45°,那么三邊長有什么特殊的數量關系?二、導讀:仔細閱讀課本內容后完成下面填空:

  • 北師大初中九年級數學下冊切線的判定及三角形的內切圓教案

    北師大初中九年級數學下冊切線的判定及三角形的內切圓教案

    解析:(1)連接BI,根據I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.

  • 北師大初中九年級數學下冊三角函數的計算2教案

    北師大初中九年級數學下冊三角函數的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據tan x= ,可以求出tan x的值,然后根據例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數學下冊利用三角函數測高2教案

    北師大初中九年級數學下冊利用三角函數測高2教案

    問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數,同樣根據“同角的余角相等”,鉛垂線所指的度數就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據測量數據,就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.

  • 北師大初中九年級數學下冊三角函數的應用2教案

    北師大初中九年級數學下冊三角函數的應用2教案

    教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的應用.2.能夠把實際問題轉化為數學問題,能夠借助于計算器進行有關三角函數的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數學活動,提高學習數學、學好數學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的作用.2.發(fā)展學生數學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現法教具準備多媒體演示

  • 北師大初中九年級數學下冊二次函數1教案

    北師大初中九年級數學下冊二次函數1教案

    (2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數1.二次函數的概念2.從實際問題中抽象出二次函數解析式二次函數是一種常見的函數,應用非常廣泛,它是客觀地反映現實世界中變量之間的數量關系和變化規(guī)律的一種非常重要的數學模型.許多實際問題往往可以歸結為二次函數加以研究.本節(jié)課是學習二次函數的第一節(jié)課,通過實例引入二次函數的概念,并學習求一些簡單的實際問題中二次函數的解析式.在教學中要重視二次函數概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數解析式的過程,體驗用函數思想去描述、研究變量之間變化規(guī)律的意義.

  • 北師大初中九年級數學下冊正切與坡度1教案

    北師大初中九年級數學下冊正切與坡度1教案

    已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數據:2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據已知條件求出AE=DF的值,再根據坡度求出BE,最后根據EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.

  • 北師大初中九年級數學下冊第一章復習教案

    北師大初中九年級數學下冊第一章復習教案

    一、本章知識要點: 1、銳角三角函數的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

  • 北師大初中九年級數學下冊切線長定理教案

    北師大初中九年級數學下冊切線長定理教案

    (3)若要滿足結論,則∠BFO=∠GFC,根據切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級數學下冊圓教案

    北師大初中九年級數學下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 北師大初中九年級數學下冊圓的對稱性教案

    北師大初中九年級數學下冊圓的對稱性教案

    我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.

  • 北師大初中九年級數學下冊正弦與余弦1教案

    北師大初中九年級數學下冊正弦與余弦1教案

    解析:根據銳角三角函數的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.

  • 北師大初中七年級數學下冊用尺規(guī)作三角形教案

    北師大初中七年級數學下冊用尺規(guī)作三角形教案

    【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結:已知三角形三邊的長,根據全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學習了有關三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學生的動手能力、語言表達能力

  • 北師大初中七年級數學上冊角的比較教案1

    北師大初中七年級數學上冊角的比較教案1

    1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導入同學們,如圖是我們生活中常用的剪刀模型,現在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產流水線上生產如圖所示的工件,其中∠α稱為工件的中心角,生產要求∠α的標準角度為30°±1°,一名質檢員在檢驗時,手拿一量角器逐一測量∠α的度數.請你運用所學的知識分析一下,該名質檢員采用的是哪種比較方法?你還能給該質檢員設計更好的質檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質檢中,采用疊合法比較快捷.

  • 北師大初中七年級數學上冊角教案1

    北師大初中七年級數學上冊角教案1

    1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關系,并會進行簡單的換算.一、情境導入鐘表是我們生活中常見的物品,同學們,你能說出圖中每個鐘表時針與分針所成的角度嗎?學完了下面的內容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關,角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形,說法正確.所以只有④正確.故選A.

  • 北師大初中七年級數學上冊扇形統(tǒng)計圖教案1

    北師大初中七年級數學上冊扇形統(tǒng)計圖教案1

    根據題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結:從扇形統(tǒng)計圖中獲取正確的信息是解題的關鍵.語文老師對班上學生的課外閱讀情況做了調查,并請數學老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數占全班人數的百分比.(4)用最喜歡某種書籍的人數比全班的總人數即可得各個百分比,所有的百分比之和為1.方法總結:由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.

  • 北師大初中七年級數學上冊科學記數法教案2

    北師大初中七年級數學上冊科學記數法教案2

    光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢?,1毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一??上攵?,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內,故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學中也有重要應用。納米材料科學是20世紀80年代末誕生并正在崛起的科技新領域,它將成為跨世紀的科技熱點之一。

  • 北師大初中七年級數學上冊代數式教案2

    北師大初中七年級數學上冊代數式教案2

    1.進一步理解字母表示數的意義,能結合具體情景給字母賦于實際意義;理解代數式和代數式的值的意義,能解釋一些簡單代數式的實際背景或幾何意義,在具體情景中能求出代數式的值. (重難點)2.通過創(chuàng)設實際背景和引用符號,經歷觀察、體驗、驗算、猜想、歸納等數學過程,體會數學與現實世界的聯(lián)系,增強符號感,發(fā)展運用符號解決問題和數學探究意識. 教法學法:教學方法:引導—探究—發(fā)現法.學習方法:自主探究與合作交流相結合.課前準備:多媒體課件、投影儀、電腦教學過程:一、創(chuàng)設情境,引入新課.欣賞視頻,導入新課師:國慶六十周年大閱兵,同學們看了嗎?首先請同學們來欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個瞬間.)師:這是新中國成立以來,規(guī)模最大、裝備最新、機械化程度最高的一次大閱兵.

  • 北師大初中七年級數學上冊數據的收集教案2

    北師大初中七年級數學上冊數據的收集教案2

    1. 小明的腳長23.6厘米,鞋號應是 號。2.小亮的腳長25.1厘米,鞋號應是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結:剛才同學們都體會到了分組編碼使原來繁多,無敘的數據簡化、有序。因此分組、編碼是整理數據的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應用(四)反饋練習課內練習以下是某校七年級南,女生各10名右眼裸視的檢測結果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數據是用什么方法獲得的?(2)學生右眼視力跟性別有關嗎?為了回答這個問題,你將怎樣處理這組數據?你的結論是什么?(五). 歸納小結,體味數學快樂通過本節(jié)課的學習,你有那些收獲?(課堂小結交給學生)數據收集的方法:直接觀察、測量、調查、實驗、查閱文獻資料、使用互連網等。整理數據的方法:分類、排序、分組編碼等。(學生可能還會指出鞋碼和腳長之間的關系等)

  • 北師大初中七年級數學上冊數軸教案2

    北師大初中七年級數學上冊數軸教案2

    議一議數軸上的兩個點,右邊點表示的數與左邊點表示的數有怎樣的大小關系?數軸上表示的數,▁▁▁邊的總比▁▁▁邊的大;正數▁▁▁0,負數▁▁▁0,正數▁▁▁負數。練習:比較大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數軸?怎樣畫數軸。(2) 有理數與數軸上的點之間存在怎樣的關系?(3) 什么是相反數?怎樣求一個數的相反數?(4) 如何利用數軸比較有理數的大小?5、隨堂練習:(1)下列說法正確的是( ) A、 數軸上的點只能表示有理數B、 一個數只能用數軸上的一個點表示C、 在1和3之間只有2D、 在數軸上離原點2個單位長度的點表示的數是2 (2)語句:①-5是相反數?②-5與+3互為相反數③-5是5的相反數④-5和5互為相反數⑤0的相反數是0⑥-0=0。上述說法中正確的是( )

上一頁12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。