
The newspaper reported more than 100 people had been killed in the thunderstorm.報紙報道說有一百多人在暴風雨中喪生。(2)before、when、by the time、until、after、once等引導的時間狀語從句的謂語是一般過去時,以及by、before后面接過去的時間時,主句動作發(fā)生在從句的動作或過去的時間之前且表示被動時,要用過去完成時的被動語態(tài)。By the time my brother was 10, he had been sent to Italy.我弟弟10歲前就已經(jīng)被送到意大利了。Tons of rice had been produced by the end of last month. 到上月底已生產(chǎn)了好幾噸大米。(3) It was the first/second/last ... time that ...句中that引導的定語從句中,主語與謂語構成被動關系時,要用過去完成時的被動語態(tài)。It was the first time that I had seen the night fact to face in one and a half years. 這是我一年半以來第一次親眼目睹夜晚的景色。(4)在虛擬語氣中,條件句表示與過去事實相反,且主語與謂語構成被動關系時,要用過去完成時的被動語態(tài)。If I had been instructed by him earlier, I would have finished the task.如果我早一點得到他的指示,我早就完成這項任務了。If I had hurried, I wouldn't have missed the train.如果我快點的話,我就不會誤了火車。If you had been at the party, you would have met him. 如果你去了晚會,你就會見到他的。

You have no excuse for not going.你沒有理由不去。He was punished for not having finished his homework.他因未完成作業(yè)而受到懲罰。2.動詞ing形式復合結構由物主代詞或人稱代詞賓格、名詞所有格或普通格加動詞ing,即“sb./sb.'s+doing”構成。動詞ing形式的復合結構實際上是給動詞ing形式加了一個邏輯主語。動詞ing形式的復合結構有四種形式:①形容詞性物主代詞+動詞ing②名詞所有格+動詞ing③代詞賓格+動詞ing④名詞+動詞ingHer coming to help encouraged all of us.她來幫忙鼓舞了我們所有人。The baby was made awake by the door suddenly shutting.這個嬰兒被突然的關門聲吵醒了。Can you imagine him/Jack cooking at home?你能想象他/杰克在家做飯的樣子嗎?無生命名詞無論是作主語還是作賓語都不能用第②種形式。Tom's winning first prize last year impressed me a lot.湯姆去年得了一等獎使我印象深刻。Do you mind my/me/Jack's/Jack leaving now?你介意我/杰克現(xiàn)在離開嗎?Excuse me for my not coming on time.很抱歉我沒能按時來。His father's being ill made him worried.他父親病了,他很擔心。We are looking forward to the singer's/the singer to give us a concert.我們盼望著這位歌手來給我們舉辦一場演唱會。

1.自學文本出示書中情境圖:有21架飛機要參加飛行表演,怎樣飛呢?想請同學們幫忙設計編組方案,下面小組同學合作,用學具擺一擺,設計出自己的編組方案,看哪個小組設計的方案最多?學生小組合作,邊擺學具邊說方案。2.交流研討哪組想到前面來匯報一下你們制定的飛行方案?(不必強調平均分,如有小組同學說出每組有7(3)架,可以分成3(7)組,或每7(3)架一組,可以分成3(7)組,老師在給予肯定的同時可以問其它小組擺法一樣嗎?之后板書算式:21÷7=3,21÷3=7。如果學生沒說出平均分,老師可引導說:有時表演的每組也可同樣多)

(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領學生一起列出方程組)解:設勝X場,負Y場。根據(jù):勝的場數(shù)+負的場數(shù)=總場數(shù) 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16

三、學情與教材分析《積的變化規(guī)律》是九年義務教育課程標準實驗教科書小學數(shù)學四年級上冊第三單元的內容。本課例以一組乘法算式為載體,引導學生探索當一個因數(shù)不變時,另一個因數(shù)與積的變化規(guī)律。在學生已經(jīng)掌握了乘法運算的基本技能的基礎上,在乘法運算中探索積的變化規(guī)律。通過這個過程的探索,學生將會經(jīng)歷研究問題——歸納發(fā)現(xiàn)規(guī)律——解釋說明規(guī)律——舉例驗證規(guī)律四個層次的學習過程。學生將會用到觀察、計算、自主探索、合作交流等學習手段,并最終發(fā)現(xiàn)規(guī)律,歸納與驗證規(guī)律,從而有效的培養(yǎng)學生探索與推理的能力,讓學生體會事物間是密切相關的,受到辯證思想的啟蒙教育。例題的設計分三個層次:1、教材設計了一組乘法算式,引導學生在觀察,計算,對比的基礎上自主發(fā)現(xiàn)因數(shù)變化引起積的變化規(guī)律。

第三個規(guī)律,商不變的規(guī)律。這是本課的重點內容。有了兩次的探究經(jīng)驗,這一規(guī)律的學習與理解,可以完全放手讓學生自主進行。猜想如果商不變,被除數(shù)、除數(shù)會發(fā)生什么變化呢?學生根據(jù)已有的經(jīng)驗,可能會有不同猜想,我要求學生帶著問題通過計算、觀察、比較、主動探討總結出:被除數(shù)和除數(shù)同時擴大(或縮?。┫嗤谋稊?shù)(0除外)商不變。利用合作學習,通過動腦動口動手,既提高學生解決問題的學習能力,又培養(yǎng)了合作學習的意識和習慣。給學生提供展示研究成果的機會,體驗成功。需要教師提醒的是“有沒有被除數(shù)和除數(shù)同時乘或除以不相同的數(shù),商也不變的?”學生舉反例加以說明并指出“相同的倍數(shù)不包括0”。設計這個環(huán)節(jié),也有意讓學生去驗證商不變性質。學生在表述時,對于邏輯的嚴密性和語言的完整性需要老師及時指導,在突出重點的同時培養(yǎng)學生的語言表達能力。整個環(huán)節(jié)在驗證的基礎上,步步深化商的變化規(guī)律,為學生應用新知做好鋪墊。

一、教學目標(一)知識教育點使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.(二)能力訓練點要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉化等方面的能力.(三)學科滲透點通過一個簡單實驗引入拋物線的定義,可以對學生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標準方程.2.難點:拋物線的標準方程的推導.三、活動設計提問、回顧、實驗、講解、板演、歸納表格.四、教學過程(一)導出課題我們已學習了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學習第四種圓錐曲線——拋物線,以及它的定義和標準方程.課題是“拋物線及其標準方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。

教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 8.4 圓(二) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內直線與圓的位置關系有三種(如圖8-21): (1)相離:無交點; (2)相切:僅有一個交點; (3)相交:有兩個交點. 并且知道,直線與圓的位置關系,可以由圓心到直線的距離d與半徑r的關系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質疑 引導 分析 了解 思考 思考 帶領 學生 分析 啟發(fā) 學生思考 0 15*動腦思考 探索新知 【新知識】 設圓的標準方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關系. 講解 說明 引領 分析 思考 理解 帶領 學生 分析 30*鞏固知識 典型例題 【知識鞏固】 例6 判斷下列各直線與圓的位置關系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標準方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關系的其他方法? *例7 過點作圓的切線,試求切線方程. 分析 求切線方程的關鍵是求出切線的斜率.可以利用原點到切線的距離等于半徑的條件來確定. 解 設所求切線的斜率為,則切線方程為 , 即 . 圓的標準方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問題中有著廣泛的應用. 【想一想】 能否利用“切線垂直于過切點的半徑”的幾何性質求出切線方程? 說明 強調 引領 講解 說明 引領 講解 說明 觀察 思考 主動 求解 思考 主動 求解 通過例題進一步領會 注意 觀察 學生 是否 理解 知識 點 50

教學目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質。教學重點:正態(tài)分布的密度函數(shù)和分布函數(shù)。教學難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質。教學學時:2學時教學過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數(shù)。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。

教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實和解決實際問題中的作用,進一步體會數(shù)形結合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當?shù)淖鴺讼担?3. 教學用具 多媒體4. 標簽

本人所教的兩個班級學生普遍存在著數(shù)學科基礎知識較為薄弱,計算能力較差,綜合能力不強,對數(shù)學學習有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識到自己的不足,對數(shù)學課的學習興趣高,積極性強。 學生在學習交往上表現(xiàn)為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協(xié)同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數(shù)學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據(jù)條件求橢圓的標準方程,會根據(jù)橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質,能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用。 1.讓學生經(jīng)歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數(shù)形結合等數(shù)學思想;培養(yǎng)學生運用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學生運用數(shù)形結合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質的對比來提高學生聯(lián)想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數(shù)學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數(shù)學知識的積極態(tài)度. 2.進一步理解并掌握代數(shù)知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。

(一)、創(chuàng)設情景,導入新課摸牌游戲:三位同學持三組牌,指定三位同學分別任意摸出一張,看誰能摸到紅牌,他們一定能摸到紅牌嗎?請手持牌的同學根據(jù)自已手中牌的情況,用語言描述一下抽出紅牌的情況??偨Y:在一定條件下,有些事情我們事先能肯定它一定發(fā)生,這些事情成為 事件。有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為 事件。 事件和 事件統(tǒng)稱為確定事件。許多事情我們事先無法肯定它會不會發(fā)生,這些事情稱為 事件,也稱為 事件。

3)乘除運算①有理數(shù)的乘法法則:(老師給出,學生一起朗讀)1. 兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;2. 任何數(shù)與零相乘都得零;3. 幾個不等于零的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個數(shù),積為負;當負因數(shù)的個數(shù)為偶數(shù)個時,積為正;4. 幾個有理數(shù)相乘,若其中有一個為零,積就為零。②有理數(shù)的除法法則:(老師提問,學生回答)1. 兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除;2. 除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。③關系(老師給出)除法轉化為乘法進行運算。

一、課前準備師:同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?學生:我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍,適合什么人穿,但肯定與身高、胖瘦有關.師:這位同學很善動腦,也愛觀察.S代表最小號,身高在150~155cm的人適合穿S號.M號適合身高在155~160cm的人著裝……廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).你覺得這種生產(chǎn)方法有什么優(yōu)點?學校要為同學們訂制校服,為此小明調查了他們班50名同學的身高,結果(單位cm).如下

本節(jié)的內容主要是反比例函數(shù)的概念教學.反比例函數(shù)概念的建立,不能從形式上進行簡單的抽象與概括,而是對這些實例從不同角度抽象出本質屬性后,再進行概括。教材設計的基本思路是從現(xiàn)實生活中大量的反比例關系中抽象出反比例函數(shù)概念,讓學生進一步感受函數(shù)是反映現(xiàn)實世界中變量關系的一種有效數(shù)學模型,逐步從對具體反比例函數(shù)的感性認識上升到對抽象的反比例函數(shù)概念的理性認識. 同時本節(jié)的學習內容,直接關系到本章后續(xù)內容的學習,也是繼續(xù)學習其它各類函數(shù)的基礎,其中蘊涵的類比、歸納、對應和函數(shù)的數(shù)學思想方法,對學生今后研究問題、解決問題以及終身的發(fā)展都是非常有益的.基于以上分析,本節(jié)教學設計是建立在一個個數(shù)學活動的基礎上,經(jīng)過對情境理解、本質抽象的積累而形成的.讓學生對一類問題情境中兩個變量間的關系,在充分經(jīng)歷寫表達式,計算函數(shù)值和觀察函數(shù)值隨自變量變化規(guī)律的過程中,逐步概括形成反比例函數(shù)的概念.針對教學實際,我選取了貼學生現(xiàn)實的,有價值的實例“文具店里買學習用品”和“剪面積為定值的長方形紙片”等作為問題情境.

《貼郵票》活動要求:A、每組4人,給四封不同地點、質量的信件B、根據(jù)信封上的信息計算郵費并按要求貼上郵票(郵票的總面值剛好等于郵費,不能多貼)每封信最多貼三張郵票,只有0.8元或1.2元的兩種郵票紀律要求:看看哪組合作得最好,速度最快!如果遇到困難,在事發(fā)那個在一邊最后再去解決。3、小組匯報(1)、貼郵票的過程中大家遇到了什么問題?(有的能貼有的不能貼)這樣的信件有哪些?(告訴我地點、質量、郵費)(2)、其他的信件都能貼出來嘛?說說看你是怎么貼郵票的?(3)、請將你們貼好郵票的信件送到郵箱來。剩下的都是一些“難題”(4)、思考:為什么4.0元、4.8元、6元的郵費沒有辦法按要求貼出郵票?(5)、原因出在哪里?這個問題怎么解決?(郵票面值太小,將郵票的面值改大)(6)、那最少要改成多大的?為什么?(將郵票面值改大,你會從多大面值的郵票開始考慮?為什么?)

活動內容:教師首先讓學生回顧學過的三類事件,接著讓學生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認為正面朝上和正面朝下的可能性相同嗎?(讓學生體驗數(shù)學來源于生活)?;顒幽康模菏箤W生回顧學過的三類事件,并由擲硬幣游戲培養(yǎng)學生猜測游戲結果的能力,并從中初步體會猜測事件可能性。讓學生體會猜測結果,這是很重要的一步,我們所學到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。

一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).

1、問題1的設計基于學生已有的一元一次方程的知識,學生獨立思考問題,同學會考慮到題中涉及到等量關系,從中抽象出一元一次方程模型;同學可能想不到用方程的方法解決,可以由組長帶領進行討論探究.2、問題2的設計為了引出二元一次方程,但由于同學的知識有限,可能有個別同學會設兩個未知數(shù),列出二元一次方程;如果沒有生列二元一次方程,教師可引導學生分析題目中有兩個未知量,我們可設兩個未知數(shù)列方程,再次從中抽象出方程模型.根據(jù)方程特點讓生給方程起名,提高學生學習興趣.3、定義的歸納,先請同學們觀察所列的方程,找出它們的共同點,并用自己的語言描述,組內交流看法;如果學生概括的不完善,請其他同學補充. 交流完善給出定義,教師規(guī)范定義.

8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結1、關于y軸對稱的兩個圖形上點的坐標特征:(x , y)——(- x , y)2、關于x軸對稱的兩個圖形上點的坐標特征:(x , y)——(x , - y)3、關于原點對稱的兩個圖形上點的坐標特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習題3.5 1,2,3四、 教學反思通過“坐標與軸對稱”,經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程, 掌握空間與圖形的基礎知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學生對數(shù)學學習的好奇心與求知欲,學生能積極參與數(shù)學學習活動;積極交流合作,體驗數(shù)學活動充滿著探索與創(chuàng)造。教學中務必給學生創(chuàng)造自主學習與合作交流的機會,留給學生充足的動手機會和思考空間,教師不要急于下結論。事先一定要準備好坐標紙等,提高課堂效率。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。