
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時(shí)間等,都是數(shù)值變量,數(shù)值變量的取值為實(shí)數(shù).其大小和運(yùn)算都有實(shí)際含義.在現(xiàn)實(shí)生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對(duì)學(xué)生的成績(jī)有影響,不同班級(jí)學(xué)生用于體育鍛煉的時(shí)間是否有差別,吸煙是否會(huì)增加患肺癌的風(fēng)險(xiǎn),等等,本節(jié)將要學(xué)習(xí)的獨(dú)立性檢驗(yàn)方法為我們提供了解決這類問題的方案。在討論上述問題時(shí),為了表述方便,我們經(jīng)常會(huì)使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機(jī)變量稱為分類變量.分類變量的取值可以用實(shí)數(shù)表示,例如,學(xué)生所在的班級(jí)可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時(shí)候,這些數(shù)值只作為編號(hào)使用,并沒有通常的大小和運(yùn)算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.

1.對(duì)稱性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對(duì)值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗(yàn)線性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢(shì)的異同.

4.寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.

3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.

對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過數(shù)字來反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

溫故知新 1.離散型隨機(jī)變量的定義可能取值為有限個(gè)或可以一一列舉的隨機(jī)變量,我們稱為離散型隨機(jī)變量.通常用大寫英文字母表示隨機(jī)變量,例如X,Y,Z;用小寫英文字母表示隨機(jī)變量的取值,例如x,y,z.隨機(jī)變量的特點(diǎn): 試驗(yàn)之前可以判斷其可能出現(xiàn)的所有值,在試驗(yàn)之前不可能確定取何值;可以用數(shù)字表示2、隨機(jī)變量的分類①離散型隨機(jī)變量:X的取值可一、一列出;②連續(xù)型隨機(jī)變量:X可以取某個(gè)區(qū)間內(nèi)的一切值隨機(jī)變量將隨機(jī)事件的結(jié)果數(shù)量化.3、古典概型:①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);②每個(gè)基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點(diǎn)數(shù)X有哪些值?取每個(gè)值的概率是多少? 因?yàn)閄取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

朋友們都聽說了我們的神奇魔力,米老鼠也來請(qǐng)我們幫忙了,你們?cè)敢鈳退褖π扪a(bǔ)好嗎?(幻燈11,同時(shí)請(qǐng)一名同學(xué)到臺(tái)前來親自動(dòng)手粘一下)在我們的幫助下,米老鼠家缺了10塊磚的墻就被修補(bǔ)好了(幻燈12)七、拼圖大比賽。1、師:現(xiàn)在請(qǐng)同學(xué)們運(yùn)用自己手中的所有材料,發(fā)揮你的想象,可以自己拼,也可以和組員合作拼出自己喜歡的圖形,比一比,看那些同學(xué)拼得又好又快,又有創(chuàng)意。 2、展示學(xué)生作品。學(xué)生自己評(píng)價(jià)或者互相評(píng)價(jià)。八、欣賞品評(píng),知識(shí)延伸 師:同學(xué)們剛才拼的圖形非常漂亮,老師很喜歡。生活中有許多地方都需要優(yōu)美的圖形的裝飾,同學(xué)們也可以是一位小小設(shè)計(jì)師,設(shè)計(jì)出美麗的圖案,裝點(diǎn)生活,美化環(huán)境。(欣賞生活中的優(yōu)秀裝飾作品) 師:通過剛才的欣賞,你有什么想法?

教學(xué)目標(biāo)1、通過觀察、操作,使學(xué)生體會(huì)所學(xué)平面圖形的特征,并能用自己的語言描述長(zhǎng)方形、正方形的邊的特征。2、通過觀察、操作,使學(xué)生初步感知所學(xué)圖形之間的關(guān)系。3、通過數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生用數(shù)學(xué)進(jìn)行交流、合作探究和創(chuàng)新的意識(shí)。教具、學(xué)具準(zhǔn)備 實(shí)物風(fēng)車、圖形卡片、剪刀、膠水教學(xué)過程一、創(chuàng)設(shè)情境,生成問題(課前播放《大風(fēng)車》主題曲)小朋友,喜歡剛才聽到的歌嗎?那是少兒頻道《大風(fēng)車》節(jié)目的主題曲。今天,老師不但給大家?guī)砹艘皇状箫L(fēng)車的歌,還帶來了一個(gè)漂亮的大風(fēng)車。(老師拿風(fēng)車并讓它轉(zhuǎn)起來)想玩嗎?不過大家得自己做,能行嗎?二、探索交流,解決問題1、觀察比較誰來說說做風(fēng)車都需要哪些材料?不錯(cuò),除了小棒、大頭針,還需要一張紙做風(fēng)車的風(fēng)葉,需要什么形狀的紙呢?你們說得很對(duì),做風(fēng)車的風(fēng)葉要用一張正方形的紙(課件出示),正方形跟我們見過面了,是個(gè)老朋友了?;貞浺幌?,除了正方形,我們還學(xué)過哪些平面圖形?

1.開放教材、活用教材。按照教科書和教學(xué)用書的編排意圖,本節(jié)課應(yīng)完成例1──體會(huì)平面圖形的特征(包括一個(gè)做風(fēng)車活動(dòng)),例2──感知平面圖形的關(guān)系的教學(xué)內(nèi)容,課題為“圖形的拼組”。但是在實(shí)際的教學(xué)中,我們根據(jù)學(xué)生原有的認(rèn)知基礎(chǔ)和年齡特征,考慮到教學(xué)時(shí)間的限制,大膽地沖破了教材和教參的束縛,依據(jù)新理念重組了教學(xué)內(nèi)容,創(chuàng)造性地使用教材,將這一節(jié)課內(nèi)容分解為兩課時(shí),也就是將教科書中規(guī)定選用的一頁半教材內(nèi)容,改為只用半頁教材內(nèi)容,刪去了例2──感知平面圖形的關(guān)系(拼組活動(dòng)),而增加了“探究各種平面圖形之間的轉(zhuǎn)換關(guān)系”,并按“感知特征”→“探究關(guān)系”→“做風(fēng)車”這樣的順序來呈現(xiàn)教材,課題也做了相應(yīng)調(diào)整,叫“圖形的轉(zhuǎn)換”。這樣設(shè)計(jì),是為了更好地展現(xiàn)教材內(nèi)容,力求做到開放教材、活用教材,使教材為我所用。

第三板塊:夯實(shí)基礎(chǔ) 發(fā)展技能檢測(cè)是實(shí)施課堂優(yōu)化教學(xué)的重要手段。因此,本節(jié)課的第三板塊我設(shè)計(jì)了課堂目標(biāo)檢測(cè),檢測(cè)中以闖關(guān)形式設(shè)計(jì)了五個(gè)活動(dòng):即第一關(guān):快樂填一填。第二關(guān):動(dòng)手剪一剪。第三關(guān):用心拼一拼。第四關(guān):仔細(xì)數(shù)一數(shù)。第五關(guān):神奇拼一拼。檢測(cè)中前三關(guān),重抓基礎(chǔ)知識(shí)的落實(shí),后兩關(guān)注重學(xué)生技能的培養(yǎng),以及用數(shù)學(xué)的能力,符合低年級(jí)兒童年齡特點(diǎn),我充分利用了學(xué)生爭(zhēng)強(qiáng)好勝,樂于競(jìng)爭(zhēng)的心理,以爭(zhēng)奪智慧星的小組合作賽形式進(jìn)行檢測(cè)。既提升了學(xué)生自主強(qiáng)化知識(shí)的興趣,又培養(yǎng)了學(xué)生集體主義觀念。以上是我對(duì)《平面圖形的拼組》一課設(shè)計(jì)理念的剖析與闡述,當(dāng)然,教學(xué)是一門缺憾的藝術(shù)。所以,不足之處還請(qǐng)各位前輩提出寶貴意見!謝謝大家!

(二)、操作--“空間與圖形”學(xué)習(xí)的基本途徑 皮亞杰曾說:“數(shù)學(xué)的抽象仍是屬于操作性質(zhì)的,它的發(fā)生發(fā)展要經(jīng)過連續(xù)不斷的階段。而其最初的來源又是十分具體的行動(dòng)?!币蛐W(xué)生的年齡特點(diǎn)和認(rèn)知規(guī)律(動(dòng)作感知--建立表象--形成概念),決定小學(xué)生的數(shù)學(xué)學(xué)習(xí)離不開操作感知這一基本途徑。 本案例中,通過讓學(xué)生折一折體會(huì)長(zhǎng)方形、正方形邊的特征;讓學(xué)生用幾個(gè)相同的長(zhǎng)方形、三角形拼一拼,感受圖形從簡(jiǎn)單到復(fù)雜的變化規(guī)律;最后一題讓學(xué)生自己畫一畫,看看需要幾個(gè)長(zhǎng)方形等。教師積極創(chuàng)造條件,組織學(xué)生動(dòng)手操作,以此來參與知識(shí)的形成過程,使他們?cè)谟H身體驗(yàn)和探索中認(rèn)識(shí)和感悟圖形的特征,理解和掌握?qǐng)D形拼組的規(guī)律所在,并發(fā)展學(xué)生的思維,提高實(shí)踐能力。如果只視學(xué)生為接受知識(shí)的容器,向?qū)W生灌輸知識(shí),這節(jié)課幾分鐘就可以搞定,但是學(xué)生對(duì)長(zhǎng)方形對(duì)邊相等、正方形四條邊相等,圖形拼組中的很多細(xì)節(jié)都會(huì)是干巴巴的,所學(xué)的知識(shí)必然是有“形”無“神”的死知識(shí)。

【設(shè)計(jì)意圖】:這一環(huán)節(jié)的設(shè)計(jì)主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認(rèn)識(shí)概念。通過材料的閱讀,活動(dòng)的實(shí)踐,讓學(xué)生在自畫、自糾中,加深對(duì)概念的理解,培養(yǎng)學(xué)生良好的畫圖習(xí)慣。(三)例題講解學(xué)生活動(dòng)4:(由于例題都比較簡(jiǎn)單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫出圖中A、B、C、D、E各點(diǎn)的坐標(biāo)。例2、在直角坐標(biāo)系中,描出下列各點(diǎn):A(4,3), B(-2,3),C(-4,-1),D(2,-2)。【設(shè)計(jì)意圖】:例1的目的是給出點(diǎn)的位置,寫出點(diǎn)的坐標(biāo)。例2的目的是給出點(diǎn)的坐標(biāo),描出點(diǎn)。學(xué)完概念之后,馬上對(duì)概念進(jìn)行應(yīng)用,達(dá)到鞏固的目的。當(dāng)時(shí)上課時(shí)這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。