提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)船有觸礁的危險(xiǎn)嗎說課稿

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡單圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡單圖形的三視圖1教案

    故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡單圖形的三視圖2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡單圖形的三視圖2教案

    教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算1教案

    方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段2教案

    (三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長的比值為2:7,某 天同一時(shí)刻測(cè)得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長和面積之比2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長和面積之比2教案

    ●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長比,面積比解決實(shí)際問題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問題.●教學(xué)難點(diǎn)相似三角形周長比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算2教案

    (1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長和面積之比1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長比,面積比解決實(shí)際問題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形判定定理的證明1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形判定定理的證明1教案

    當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)概率與游戲的綜合運(yùn)用2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)概率與游戲的綜合運(yùn)用2教案

    三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再從中隨機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,每個(gè)轉(zhuǎn)盤都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 初中數(shù)學(xué)蘇科版九年級(jí)下冊(cè)《71正切》說課稿

    初中數(shù)學(xué)蘇科版九年級(jí)下冊(cè)《71正切》說課稿

    (一)自學(xué)質(zhì)疑看書 解決下面兩個(gè)問題:1.下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的? 答:圖 的臺(tái)階更陡,理由 2.除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)二次函數(shù)與一元二次方程說課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)二次函數(shù)與一元二次方程說課稿

    6、問題的檢驗(yàn)學(xué)生提出的問題和老師拓展的問題在解答過程中,學(xué)生能否真正領(lǐng)會(huì),或領(lǐng)會(huì)的程度如何?這就需要檢驗(yàn)才能了解。檢驗(yàn)的方式很多,可以通過交流、調(diào)查、反思、隨堂檢測(cè)等方式進(jìn)行。我主要采用隨堂檢測(cè)的方式,把事先準(zhǔn)備好的自測(cè)題發(fā)給學(xué)生,或利用多媒體投影來進(jìn)行當(dāng)堂檢測(cè)。檢測(cè)題目不宜過多,可隨學(xué)生的課堂表現(xiàn)而有所增減,同時(shí),把拓展性的問題作為思考題留給學(xué)生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個(gè)具有代表性的問題來完成檢驗(yàn)的。安排這一環(huán)節(jié)的意圖:通過把教學(xué)內(nèi)容以問題的形式列出來,用于檢驗(yàn)學(xué)生對(duì)知識(shí)點(diǎn)的掌握和教師教學(xué)效果的了解,幫助教師及時(shí)掌控課堂教學(xué)情況,調(diào)整教學(xué)思路和教學(xué)進(jìn)度。7、我的收獲和疑惑課程結(jié)束時(shí),讓學(xué)生談?wù)勛约旱氖斋@以及還有哪些問題沒能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學(xué)生對(duì)本節(jié)課的內(nèi)容進(jìn)行主動(dòng)的、深層次的的回顧與反思,從而加深學(xué)生對(duì)所學(xué)知識(shí)的整理、記憶與理解,同時(shí)也便于老師對(duì)課堂教學(xué)效果的及時(shí)掌握和調(diào)整以后的教學(xué)思路。

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)最大面積是多少說課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)最大面積是多少說課稿

    當(dāng)然,在討論的過程中,對(duì)個(gè)別學(xué)生要及時(shí)點(diǎn)撥利用相似三角形對(duì)應(yīng)邊的關(guān)系來求AD,至于S與x的關(guān)系式自然是水到渠成了。接著讓同學(xué)們以小組為單位,派出代表展示自己的討論成果。然后我進(jìn)一步拋出重點(diǎn)問題3)這里S與x是一種什么函數(shù)關(guān)系?當(dāng)x 取何值時(shí),S的值最大?最大值是多少?這個(gè)例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長和寬,通過學(xué)生的思考、討論、大家都明白了S與x的關(guān)系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題了.簡單的小組交流過后,同學(xué)們爭先恐后表達(dá)自己的觀點(diǎn):有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點(diǎn)坐標(biāo)求出了最大面積。 ,我及時(shí)的鼓勵(lì)學(xué)生:大家真的很棒,老師為你們驕傲,請(qǐng)?jiān)俳釉賲枴?/p>

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)何時(shí)獲得最大利潤說課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)何時(shí)獲得最大利潤說課稿

    (1)寫出平均每天銷售(y)箱與每箱售價(jià)x(元)之間的函數(shù)關(guān)系式.(注明范圍)(2)求出商場(chǎng)平均每天銷售這種牛奶的利潤W(元)與每箱牛奶的售價(jià)x(元)之間的二次函數(shù)關(guān)系式(每箱的利潤=售價(jià)-進(jìn)價(jià)).(3)求出(2)中二次函數(shù)圖象的頂點(diǎn)坐標(biāo),并求當(dāng)x=40,70時(shí)W的值.在坐標(biāo)系中畫出函數(shù)圖象的草圖.(4)由函數(shù)圖象可以看出,當(dāng)牛奶售價(jià)為多少時(shí),平均每天的利潤最大?最大利潤為多少?解:(1)當(dāng)40≤x≤50時(shí),則降價(jià)(50-x)元,則可多售出3(50-x),所以y=90+3(50-x)=-3x+240.當(dāng)50<x≤70時(shí),則升高(x-50)元,則可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.因此,當(dāng)40≤x≤70時(shí),y=-3x+240.(2)當(dāng)每箱售價(jià)為x元時(shí),每箱利潤為(x-40)元,平均每天的利潤為W=(240-3x)(x-40)=-3x2+360x-9600.

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)切線長定理說課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)切線長定理說課稿

    通過與學(xué)生講解切線長定義,讓學(xué)生在參與、合作中有一個(gè)猜想,再進(jìn)一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學(xué)的方法加以證明。問題的解決,使學(xué)生既能解決新的問題,同時(shí)應(yīng)用到全等、切線的性質(zhì)等知識(shí),同時(shí)三條輔助線中,兩條運(yùn)用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學(xué)習(xí)學(xué)生們已經(jīng)對(duì)切線長定理有了較深刻的了解。為了加深學(xué)生對(duì)定理的認(rèn)識(shí)并培養(yǎng)學(xué)生的應(yīng)用意識(shí)學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨(dú)立完成,加深對(duì)切線長定理的理解,老師進(jìn)行點(diǎn)評(píng),對(duì)于例2,由師生共同分析完成,交進(jìn)行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個(gè)層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識(shí)體系中,使學(xué)生的知識(shí)體系得到補(bǔ)充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識(shí)成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識(shí)。

  • 北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)正多邊形和圓說課稿

    北師大版初中數(shù)學(xué)九年級(jí)下冊(cè)正多邊形和圓說課稿

    第一道例題提示學(xué)生把地基看成一個(gè)幾何圖形,即正六邊形,逐步引導(dǎo)學(xué)生完成例題的解答。例題1:有一個(gè)亭子它的地基是半徑為4米的正六邊形,求地基的周長和面積(精確到0.1平方米)。第二道例題,我讓學(xué)生獨(dú)立完成,我在下面巡視,個(gè)別輔導(dǎo),同時(shí)我將關(guān)注不同層次學(xué)生對(duì)本節(jié)知識(shí)的理解、掌握程度,及時(shí)調(diào)整教學(xué)。最后,引導(dǎo)學(xué)生總結(jié)這一類問題的求解方法。這兩道例題旨在將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,將多邊形化歸成三角形來解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學(xué)完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。