
為城市居民提供休養(yǎng)生息的場所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請同學(xué)講解高級住宅區(qū)與低級住宅區(qū)的差別(學(xué)生答)(教師總結(jié))(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門占地面積很小,或者布局分散,形成不了相應(yīng)的功能 區(qū)。(教師提問)我們把城市功能區(qū)分了好幾種,比如說住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒有其他的功能了呢?(學(xué)生回答)不是(教師總結(jié))不是的。我們說的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請看書上的活動題。

教學(xué)目標(biāo)1.知識與技能目標(biāo):結(jié)合實例理解影響工業(yè)區(qū)位選擇的因素。聯(lián)系實際理解工業(yè)區(qū)位的發(fā)展變化。理解環(huán)境對工業(yè)區(qū)位的影響。2.過程與方法目標(biāo):利用圖表,分析影響 工業(yè)區(qū)位,培養(yǎng)學(xué)生應(yīng)用基礎(chǔ)知識及讀圖分析能力。了解本地工業(yè)發(fā)展情況,培養(yǎng)學(xué)生的分析能力。3.情感態(tài)度價值觀:通過對工業(yè)區(qū)位因素的學(xué)習(xí),激發(fā)學(xué)生探究地理問題的興趣。由環(huán)境對工業(yè)區(qū)位選擇的影響,培養(yǎng)學(xué)生的環(huán)保意識,樹立工業(yè)發(fā)展必須走可持續(xù)發(fā)展之路的思想。教學(xué)重點1影響工業(yè)區(qū)位的主要因素;2.運用工業(yè)區(qū)選擇的基本原理對工廠進(jìn)行合理的區(qū)位選擇。教學(xué)難點 判斷影響某個工廠區(qū)位的主導(dǎo)因素及其合理布局。教學(xué)方法 案例分析法、對比分析法、讀圖分析法、探究法教學(xué)用具 多媒體課件,圖表及補充材料課堂類型

知識與技能1.了解大牧場放牧業(yè)和乳畜業(yè)兩種農(nóng)業(yè)地域類型及其分布。2.通過學(xué)習(xí)大牧場放牧業(yè),學(xué)會分析農(nóng)業(yè)區(qū)位因素,訓(xùn)練讀圖分析能力。3.掌握大牧場放牧業(yè)在經(jīng)營方式、商品化、專業(yè)化、經(jīng)濟效益等方面的特點。4.解西歐乳畜業(yè)的形成因素。過程 與方法1.通過對潘帕斯草原大牧場放牧業(yè)區(qū)位因素的分析,學(xué)會歸納大牧場放牧業(yè)的區(qū)位條件。2.把西歐乳畜業(yè)和潘帕斯草原大牧場放牧業(yè)的區(qū)位條件作比較。情感態(tài)度與價值觀1.自然條件是農(nóng)業(yè)地域類型形成的條件,人類必須尊重自然規(guī)律,才能天人合一。2.人文條件也越來越大地影響到農(nóng)業(yè)的區(qū)位選擇,事物是發(fā)展的,不能用靜止的觀點看待問題?!窘虒W(xué)重點】1.理解大牧場放牧業(yè)和乳畜業(yè)兩類農(nóng)業(yè)地域類型的區(qū)位因素。2.利用圖表資料分析農(nóng)業(yè)區(qū)位因素的能力。

【教學(xué)重點】1.利用農(nóng)業(yè)區(qū)位因素分析的方法,學(xué)習(xí)水稻種植業(yè)和商品谷物農(nóng)業(yè)的特點;2.對比水稻種植業(yè)和商品谷物農(nóng)業(yè)兩種農(nóng)業(yè)生產(chǎn)地域類型,理解在農(nóng)業(yè)地域類型形成的過程中,各個農(nóng)業(yè)區(qū)位因素對其發(fā)展的影響?!窘虒W(xué)難點】1.學(xué)習(xí)農(nóng)業(yè)區(qū)位因素分析的方法,分析形成農(nóng)業(yè)地域類型的主導(dǎo)因素;2.結(jié)合文字資料與圖示資料的閱讀,初步掌握提取地理信息的基本方法?!窘虒W(xué)方法】自主探究與講議結(jié)合【教學(xué)課時】1課時【教學(xué)過程】(導(dǎo)入新課)同學(xué)們,通過前面一節(jié)課的學(xué)習(xí),我們已經(jīng)樹立了農(nóng)業(yè)區(qū)位因素的基本理論,并且有了農(nóng)業(yè)地域類型的一些基本認(rèn)識,學(xué)習(xí)了種植業(yè)和畜牧業(yè)兼有的澳大利亞的混合農(nóng)業(yè),這一節(jié)我們繼續(xù)學(xué)習(xí)兩種以種 植業(yè)為主的農(nóng)業(yè)地域類型——季風(fēng)水田農(nóng)業(yè)和商品谷物農(nóng)業(yè)。

反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數(shù)不一定相等.(3)二項展開式中的二項式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數(shù)由n次逐項減少1次直到0次,同時字母b按升冪排列,次數(shù)由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序?qū)Ω黜棝]有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大小(精確到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點

教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時,不妨設(shè)角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對應(yīng)的邊長分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20

教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 40

1、互逆命題:在兩個命題中,如果第一個命題的條件是第二個命題的 ,而第一個命題的結(jié)論是第二個命題的 ,那么這兩個命題互逆命題,如果把其中一個命題叫做原命題,那么另一個命題叫做它的 .2、互逆定理:如果一個定理的逆命題也是 ,那么這個逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).

一、導(dǎo)入新課人類社會越來越現(xiàn)代化,新科學(xué)技術(shù)日新月異,令人目不暇接,稱之到了“知識爆炸”的時代也毫不為過。由此而來的是生活的快節(jié)奏,學(xué)習(xí)和工作的競爭也越來越激烈。這種競爭一直波及到了兒童,加之中國幾千年來形成的望子成龍的傳統(tǒng)觀念,使作父母的把一切希望都寄托在孩子身上,實現(xiàn)自己未能實現(xiàn)的理想。祖孫三代4、2、1的局面,使12只眼睛都盯在了孩子身上,真是走路怕摔著,吃飯怕噎著,干活怕累著,要星星不敢摘月亮,要吃什么跑遍全城也要買來。這種過分保護(hù)、溺愛及過早地灌輸知識會得到什么結(jié)果呢?樂觀者說孩子越來越聰明,越來越早熟,將來能更好適應(yīng)現(xiàn)代化的要求;悲觀者則認(rèn)為豆芽菜式的孩子將來經(jīng)不起風(fēng)浪,小皇帝太多了很難凝聚成統(tǒng)一力量,將來誰去當(dāng)兵,誰去干那些艱苦創(chuàng)業(yè)性工作……。對孩子本身來說,是幸福還是……在此不想多發(fā)議論,還是讓我們來看看動物世界的孩子們吧,也許會得到某種啟迪。

1.說教材《記念劉和珍君》是魯迅先生用飽醮著熱淚,用悲憤的筆調(diào)寫下的一篇感人至深的散文,既有對愛國青年沉痛的悼念,又有對反動派憤怒的控訴,也有對覺醒的國民的吶喊?!队浤顒⒑驼渚肥歉咧姓Z文必修1第三單元第一課的講讀課文。文中描摹人物的音容笑貌,敘述人物的行為事跡,都融入了作者真摯的情感和深刻的感悟。對學(xué)生明辨是非,領(lǐng)悟時代精神和人生意義,有著重要的作用。新課標(biāo)強調(diào)了要全面提升高中學(xué)生的語文素養(yǎng),初步形成正確的世界觀、人生觀、價值觀,并學(xué)會收集、判斷、處理信息,具有人文素養(yǎng)、創(chuàng)新精神與實踐能力。同時,《記念劉和珍君》感情真摯,感悟深刻,具有典型人文性。結(jié)合本單元教學(xué)目標(biāo),確立教學(xué)目標(biāo)如下。

二、學(xué)情分析:學(xué)生目前對形變和彈力有一定的感性認(rèn)識但是不夠深入;知道支持力、壓力都是彈力,但是不能夠概括產(chǎn)生的原因。理性思維還沒有達(dá)到一定的層次,要想理解彈力這一抽象概念還有一定困難。因此我采取引導(dǎo)、啟發(fā)的教學(xué)方式。

活動內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒有其他的證明方法呢?這個題還可以用“內(nèi)錯角相等,兩直線平行”來證.

陸王心學(xué)與程朱理學(xué)相比有何異同?生 不同點:在理的內(nèi)涵上不同,程朱理學(xué)認(rèn)為“理”是貫通于宇宙、人倫的客觀存在,是一種普遍的規(guī)律準(zhǔn)則;陸王心學(xué)認(rèn)為心即理,是“良知”,認(rèn)為人心便是世界萬物的本原。方法上也有不同:前者向外追究,“格物致知”;后者向內(nèi)探求,“發(fā)明本心”以求理,克服私欲、回復(fù)良知。生 相同點:都提出了一個宇宙、社會、人生遵循的“理”。師 對。程朱理學(xué)是客觀唯心主義,陽明心學(xué)是主觀唯心主義。這兩者的分歧是理學(xué)范圍內(nèi)的分歧,其基本思想是一致的。師 宋明理學(xué)與漢唐以前的儒學(xué)比較,最大的特點在于批判地吸收了佛教哲學(xué)的思辨結(jié)構(gòu)和道教的宇宙生成論,將儒家的倫理學(xué)說概括升華為哲學(xué)基本問題。其實質(zhì)是把佛、道“養(yǎng)性”“修身”引向儒家的“齊家”“治國”“平天下”,對儒家的綱常道德給予哲學(xué)論證,使之神圣化、絕對化、普遍化,以便深入人心,做到人人遵而行之。

一、說教材《開辟新航路》是高中《歷史·必修二》第5課的內(nèi)容。從三個方面向?qū)W生介紹了歐洲人開辟新航路的歷史:即新航路開辟的原因和條件、新航路開辟經(jīng)過以及影響。前4課內(nèi)容介紹了古代中國經(jīng)濟的基本結(jié)構(gòu)與特點,從第5課開始學(xué)習(xí)資本主義世界市場的形成和發(fā)展。本課內(nèi)容相當(dāng)重要,上承古代中國,下啟近代世界。新航路的開辟,打破了世界相對隔絕的狀態(tài),世界真正開始融合為一個整體。從此,以西歐為中心的世界市場的雛形開始出現(xiàn)。隨后的殖民擴張,世界市場拓展;第一次工業(yè)革命,世界市場基本形成;第二次工業(yè)革命,世界市場發(fā)展。二、說目標(biāo)1、課程標(biāo)準(zhǔn)概述迪亞士、哥倫布開辟新航路的史實,認(rèn)識地理大發(fā)現(xiàn)對世界市場形成的意義。2、三維目標(biāo)①知識與能力:掌握新航路開辟的原因、經(jīng)過、影響。②過程與方法:引導(dǎo)學(xué)生分析原因及影響,培養(yǎng)學(xué)生分析和歸納問題的能力。③情感態(tài)度與價值觀:A、通過對新航路開辟過程的學(xué)習(xí),使學(xué)生感受和學(xué)習(xí)探險家們勇于進(jìn)取的開拓精神。B、通過學(xué)習(xí)新航路開辟的影響,使學(xué)生認(rèn)識新航路開辟促進(jìn)了人類社會的整體發(fā)展。

一、教學(xué)理論依據(jù)及設(shè)計理念以新課程理念和新課標(biāo)為指針,依據(jù)建構(gòu)主義理論、學(xué)科探究理論和多元智力理論,采用探究式的教學(xué)模式來組織實施本節(jié)課的教學(xué)。學(xué)生成為課堂的主體和知識的主動構(gòu)建者。通過創(chuàng)設(shè)多種情境,讓學(xué)生積極參與、體驗、感悟,主動獲得新知,并逐步提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。教師從課堂的主宰變?yōu)檎n堂的主導(dǎo),是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者。教學(xué)過程是一個發(fā)散式的學(xué)生自主學(xué)習(xí)的過程。采用自主、合作、探究式的教學(xué)方式,讓學(xué)生有多元選擇,激發(fā)他們的潛能,發(fā)展他們的個性。二、教材分析1.教材的地位與作用:本框題是《生活與哲學(xué)》第二單元《探索世界與追求真理》第六課“求索真理的歷程”的第二節(jié)內(nèi)容。本單元的核心問題是如何看待我們周圍的世界,該問題也是《生活與哲學(xué)》整本書的核心問題之一。

第一環(huán)節(jié):回顧引入活動內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問個別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結(jié)論.

三、教學(xué)目標(biāo)根據(jù)《錦瑟》詩的地位作用以及學(xué)生的實際情況,還有在古詩詞教學(xué)方面課程標(biāo)準(zhǔn)的相關(guān)要求,現(xiàn)確定以下“三維教學(xué)目標(biāo)”:(一)知識與技能目標(biāo):感受體悟古典詩歌的意境美,發(fā)揮合理的主觀能動性進(jìn)行創(chuàng)新性的閱讀鑒賞,正確認(rèn)識意象在詩歌意境中的重要作用。并在上述的基礎(chǔ)上提高鑒賞能力和審美情操。(二)過程與方法目標(biāo):《錦瑟》詩的講解采用“引導(dǎo)與自我生成”的方法,從老師的引導(dǎo)開始,以學(xué)生的研討交流再加之教師的總結(jié)結(jié)束。利用教師引導(dǎo)和師生互動刺激學(xué)生的領(lǐng)悟力,提高學(xué)生的認(rèn)知水平與能力。(三)情感態(tài)度價值觀目標(biāo):培養(yǎng)學(xué)生在尊重傳統(tǒng)文化的基礎(chǔ)上熱愛祖國自己文化的態(tài)度,讓學(xué)生正確認(rèn)識古典詩詞的精神美。最后在自我感悟中陶冶情操,明心啟智。

《矛盾是事物發(fā)展的源泉和動力》是人教版普通高中課程標(biāo)準(zhǔn)實驗教科書,《思想政治》必修第4冊,《生活與哲學(xué)》第3單元第9課的第1框的內(nèi)容。本節(jié)課的這部分內(nèi)容,是在學(xué)生們學(xué)習(xí)了上一框用發(fā)展練習(xí)的觀點看問題的基礎(chǔ)上展開的,本框通過矛盾同一性和斗爭性,普遍性與特殊性這兩大關(guān)系,揭示矛盾是事物發(fā)展的源泉和動力。矛盾是本書的一個重要觀點。對于學(xué)生樹立正確的人生觀以及下一階段的學(xué)習(xí)都用很重要的作用。二、說教學(xué)目標(biāo)(每個說1~2個)按照新課標(biāo)教學(xué)目標(biāo),結(jié)合著高二年級學(xué)生他們的認(rèn)知結(jié)構(gòu)及其心理特征,我制定了以下的教學(xué)目標(biāo):1、知識目標(biāo):通過學(xué)習(xí)掌握矛盾的含義。矛盾的同一性和斗爭性。矛盾的普遍性和特殊性。2、過程與方法的目標(biāo):使學(xué)生初步形成用矛盾的統(tǒng)一性和斗爭性相統(tǒng)一的觀點認(rèn)識和把握事物的能力,以及通過運用矛盾普遍性和特殊性辯證關(guān)系的原理認(rèn)識和解決問題的能力。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。