
議一議數(shù)軸上的兩個(gè)點(diǎn),右邊點(diǎn)表示的數(shù)與左邊點(diǎn)表示的數(shù)有怎樣的大小關(guān)系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負(fù)數(shù)▁▁▁0,正數(shù)▁▁▁負(fù)數(shù)。練習(xí):比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點(diǎn)之間存在怎樣的關(guān)系?(3) 什么是相反數(shù)?怎樣求一個(gè)數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大小?5、隨堂練習(xí):(1)下列說法正確的是( ) A、 數(shù)軸上的點(diǎn)只能表示有理數(shù)B、 一個(gè)數(shù)只能用數(shù)軸上的一個(gè)點(diǎn)表示C、 在1和3之間只有2D、 在數(shù)軸上離原點(diǎn)2個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是2 (2)語(yǔ)句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說法中正確的是( )

在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語(yǔ)言表達(dá)他們的想法,在估算的過程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對(duì)“畫能掛上去嗎”這個(gè)問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動(dòng)學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.

② 命題的含義:判斷一件事情的句子,叫做命題,如果一個(gè)句子沒有對(duì)某一件事情作出任何判斷,那么它就不是命題.活動(dòng)目的:通過課后的總結(jié),使學(xué)生對(duì)定義、命題等概念有更清楚的認(rèn)識(shí),讓學(xué)生在頭腦中對(duì)本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對(duì)定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對(duì)命題的學(xué)習(xí)有了清楚的認(rèn)識(shí)。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級(jí)數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰(shuí)找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對(duì)數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無味的。并能從表演中不同的人對(duì)“黑客”這個(gè)名詞的不同理解更好地悟出“定義”的含義。

一、情境導(dǎo)入神舟十號(hào)是中國(guó)神舟號(hào)系列飛船之一,主要由推進(jìn)艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號(hào)在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時(shí)38分02.666秒發(fā)射,由長(zhǎng)征二號(hào)F改進(jìn)型運(yùn)載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號(hào)十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號(hào)進(jìn)行對(duì)接.6月26日回歸地球.要讀懂這段報(bào)導(dǎo),你認(rèn)為要知道哪些名稱和術(shù)語(yǔ)的含義?二、合作探究探究點(diǎn)一:定義 下列語(yǔ)句屬于定義的是()A.明天是晴天B.長(zhǎng)方形的四個(gè)角都是直角C.等角的補(bǔ)角相等D.平行四邊形是兩組對(duì)邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對(duì)天氣的預(yù)測(cè),B是描述長(zhǎng)方形的性質(zhì),C是描述補(bǔ)角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對(duì)術(shù)語(yǔ)和名稱的含義的描述,是對(duì)一個(gè)事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對(duì)其性質(zhì)的判斷.

一、情境導(dǎo)入上一節(jié)課我們做過:由兩個(gè)邊長(zhǎng)為1的小正方形,通過剪一剪,拼一拼,得到一個(gè)邊長(zhǎng)為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.

解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過解決實(shí)際問題,體會(huì)數(shù)學(xué)與社會(huì)生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.

已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.

本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動(dòng)開啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語(yǔ)言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.(三)強(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.

學(xué)科數(shù)學(xué) 課 題 1.2 集合之間的關(guān)系班級(jí) 人數(shù) 授課時(shí)數(shù)2 課 型新課 周次 授課時(shí)間 教 學(xué) 目 的 知識(shí)目標(biāo):(1)掌握子集、真子集的概念; (2)掌握兩個(gè)集合相等的概念; (3)會(huì)判斷集合之間的關(guān)系. 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動(dòng),學(xué)生之間的討論分析,加強(qiáng)合作意識(shí)。 教學(xué)重點(diǎn)集合與集合間的關(guān)系及其相關(guān)符號(hào)表示. 教學(xué)難點(diǎn)真子集概念的理解.

1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長(zhǎng).一、情境導(dǎo)入愛護(hù)花草樹木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對(duì)嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識(shí),你就會(huì)知道.二、合作探究探究點(diǎn)一:線段長(zhǎng)度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長(zhǎng)如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長(zhǎng);(2)根據(jù)(1)中的計(jì)算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長(zhǎng)度嗎?請(qǐng)用簡(jiǎn)潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.

教學(xué)反思: 1.本課時(shí)設(shè)計(jì)的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對(duì)數(shù)與形有一個(gè)初步的認(rèn)識(shí).為將來的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個(gè)新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學(xué)生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認(rèn)識(shí).實(shí)際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識(shí)的同時(shí),交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點(diǎn)不容忽視,在日常的教學(xué)中要時(shí)時(shí)注意.2.學(xué)生在小學(xué)時(shí)只會(huì)用圓規(guī)畫圓,不會(huì)用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學(xué)生對(duì)圓規(guī)的用法有一個(gè)新的認(rèn)識(shí).3.在課堂練習(xí)中安排了度量一些三角形的邊的長(zhǎng)度,目的是想通過度量使學(xué)生對(duì)“兩點(diǎn)之間線段最短”這一結(jié)論有一個(gè)感性的認(rèn)識(shí),并為下面的教學(xué)做一個(gè)鋪墊.

1.經(jīng)歷從不同方向觀察物體的活動(dòng)過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停弧⑶榫硨?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.

【教學(xué)目標(biāo)】1.經(jīng)歷從不同方向觀察物體的活動(dòng)過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達(dá)自己的思維過程.2.在觀察的過程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的圖形.3.能識(shí)別簡(jiǎn)單物體的三視圖,會(huì)畫立方體及其簡(jiǎn)單組合體的三視圖.【基礎(chǔ)知識(shí)精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個(gè)點(diǎn)表示圓錐的頂點(diǎn),因?yàn)閺纳贤驴磮A錐時(shí)先看到圓錐的頂點(diǎn),再看到底面的圓.3.如何畫三視圖 當(dāng)用若干個(gè)小正方體搭成新的幾何體,如何畫這個(gè)新的幾何體的三視圖?

(1)請(qǐng)你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計(jì)教學(xué)過程中,應(yīng)通過活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).

方法總結(jié):對(duì)等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.

教學(xué)目標(biāo)1、知識(shí)目標(biāo):掌握等式的性質(zhì);會(huì)運(yùn)用等式的性質(zhì)解簡(jiǎn)單的一元一次方程。2、能力目標(biāo):通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的意識(shí)和情感,敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,獲得成功的體驗(yàn),體會(huì)解決問題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡(jiǎn)單的一元一次方程化為“x=a”的形式。教學(xué)時(shí)數(shù) 2課時(shí)(本節(jié)課是第一課時(shí))教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)

方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語(yǔ),如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對(duì)于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對(duì)照和分析,即可判定.探究點(diǎn)二:確定多邊形的對(duì)角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對(duì)角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對(duì)角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對(duì)應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;

解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時(shí),要做到不重不漏,分類標(biāo)準(zhǔn)不同時(shí),分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫線可以理解為點(diǎn)動(dòng)成線.使用數(shù)學(xué)知識(shí)解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個(gè)球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動(dòng).解:(1)點(diǎn)動(dòng)成線;(2)線動(dòng)成面;(3)面動(dòng)成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識(shí)來解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識(shí)的連接點(diǎn),如第(1)題可將流星看作一個(gè)點(diǎn),則“點(diǎn)動(dòng)成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()

四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。

(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級(jí)共有600名學(xué)生,估計(jì)該年級(jí)在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖中C、D區(qū)所占的百分比,即可求出該年級(jí)在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計(jì)該年級(jí)在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個(gè)統(tǒng)計(jì)圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時(shí),由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對(duì)應(yīng)的是扇形統(tǒng)計(jì)圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。