提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版新目標初中英語七年級下冊Where is your pen pal from說課稿3篇

  • 人教部編版道德與法制五年級下冊我們的公共生活說課稿

    人教部編版道德與法制五年級下冊我們的公共生活說課稿

    1. 在你的周圍有哪些常見的公共設施?它們各有什么功能?2. 我們能為愛護公共設施做些什么?答案:1. 常見公共實施:綠地、道路、路燈、地下(上)線路和管道停車場(庫)、 配電房(室)及電器設備、消防設備、電梯、健身娛樂設施公告牌等。功能:這些設施為人們提供了宜居的優(yōu)美環(huán)境,為人們?nèi)粘I钐峁┝朔奖?,維護了人們正常的生活秩序,使人們的公共生活有了安全保障。2. 我們要了解各類公共設施的功能和使用方法,愛惜使用各類公共設施,不損壞公共設施;自覺參與維護公共設施的活動,主動護理公共設施3. 愛護公共施的做法有哪些?①要了解各類公共設施的功能和使用方法,愛惜使用各類公共設施,不損壞公共設施;②自覺參與維護公共設施的活動,主動護理公共設施。

  • 人教部編版道德與法制五年級下冊建立良好的公共秩序說課稿

    人教部編版道德與法制五年級下冊建立良好的公共秩序說課稿

    教師小結:同學們,通過剛才的討論,我們明白了只有大家共同遵守規(guī)則,才能創(chuàng)造和諧文明的社會環(huán)境,正如著名學者萊蒙特所說的:“世界上的一切都必須按照一定的規(guī)矩秩序各就各位。”(六)、課堂總結師:通過今天對《建立良好的公共秩序》這一課的學習,我們懂得了什么?在生回答的基礎上師進一步談話:生活中有許多看起來是微不足道的事情,實際上都同社會的主產(chǎn)、生活乃至每個社會成員的工作、學習、生活密不可分,如果一個社會的公共秩序受到了破壞,這個社會的正常生產(chǎn)和生活也就受到極大的影響,社會風氣就會頹敗,反之如果一個社會的每個成員都學法、懂法、守法、護法,擁有一個良好的公共秩序,那么社會就會有條有理,井然有序,因此建立一個良好的社會公共秩序,是我們大家的迫切希望,希望同學們從我做起,從現(xiàn)在做起,認真遵守公共秩序吧!

  • 人教部編版道德與法制五年級下冊屹立在世界的東方說課稿

    人教部編版道德與法制五年級下冊屹立在世界的東方說課稿

    討論交流:正是靠著這種民族精神,我國建成了一個個大油田。到1965年,中國的石油基本實現(xiàn)自給。5、補充資料1964年10月16日和1967年6月17日,中國西北羅布泊大漠中,升起了蘑菇狀的煙云。我國相繼成功爆炸了第一顆原子彈和第一顆氫彈,成為繼美國、蘇聯(lián)、英國之后第四個同時擁有原子彈和核彈的國家。中國從此擁有了保家衛(wèi)國、捍衛(wèi)和平的核力量。交流鄧稼先故事1950年8月,鄧稼先在美國獲得博士學位九天后,便謝絕了恩師和同校好友的挽留,毅然決定回國。同年10月,鄧稼先來到中國科學院近代物理研究所任研究員。在北京外事部門的招待會上,有人問他帶了什么回來。他說:“帶了幾雙眼下中國還不能生產(chǎn)的尼龍襪子送給父親,還帶了一腦袋關于原子核的知識?!贝撕蟮陌四觊g,他進行了中國原子核理論的研究。

  • 人教部編版道德與法制五年級下冊不甘屈辱,奮勇抗爭說課稿

    人教部編版道德與法制五年級下冊不甘屈辱,奮勇抗爭說課稿

    師小結:氣勢恢宏的建筑,價值連城的奇珍異寶,不知凝聚著古今中外多 少能工巧匠的智慧和心血,因此,圓明園被譽為“萬園之園”。活動二:惋惜圓 明園的毀滅1、令人遺憾的是,令人悲憤的是,這“萬園之園”竟被一把無情的火燒成 了灰燼,那么,火燒圓明園是在什么情況下發(fā)生的呢?讓我們看看當時的情景。師:這把無情的大火把我們引以為豪的“萬園之園”燒成了一片灰燼,毀 于一旦?!鍟簹в谝坏?、想一想,當時的圓明園為什么會被掠奪、焚燒?[ 出示課件 ] 南京條約的內(nèi)容,用一個詞來形容自己看到條約的心情。3.師:是的,只要是有良知的中國人看到這份條約都會感到無比的憤怒。 可是還有比這更令人憤怒的事,1900 年,八國聯(lián)軍侵入中國,你們知道他們都 干了些什么嗎?4.圓明園如果存在于現(xiàn)在的中國,它還會遭到掠奪嗎?為什么?(不會,因為中國強大了。)從哪可以看出中國強大了?(生自由說)

  • 人教部編版道德與法制五年級下冊讀懂彼此的心說課稿

    人教部編版道德與法制五年級下冊讀懂彼此的心說課稿

    (四)總結雖然爸爸媽媽很忙,現(xiàn)在你能體會到他們的辛勞了嗎?你可以回家和他們說說心里話。第二課時(一)正確認知,化解矛盾。1.播放音頻《一個孩子的煩惱自述》。2.師:其實,生活中我們常常會遇到和父母發(fā)生矛盾的時候,這是正?,F(xiàn)象。但是如何面對和解決呢?3.當你和家人產(chǎn)生矛盾的時候,會采取什么樣的態(tài)度和做法呢?閱讀活動園材料,說一說你會選擇哪種方式?(二)理性面對:交流方式多。1、其實,遇到問題并不可怕,辦法總比困難多。2.閱讀王玉理的故事,你受到哪些啟發(fā)?3.交流方式有很多:如寫信、留言條等。4.情景出示:班里很多學生都可以用鋼筆書寫了,由于我寫字漏字錯字現(xiàn)象多,老師讓我再練練,可是媽媽覺得是我寫字寫得不好。我認為這明明是兩個問題,媽媽的誤解讓我很不開心。如果是你,你會怎么做呢?選擇合適的方式,試著主動和媽媽交流溝通吧。

  • 人教部編版道德與法制五年級下冊弘揚優(yōu)秀家風說課稿

    人教部編版道德與法制五年級下冊弘揚優(yōu)秀家風說課稿

    你知道這些名言警句出自哪里嗎?從中你可以學到什么?儉以養(yǎng)德,靜以修身?!T葛亮《誡子書》我們要養(yǎng)成節(jié)儉的美德,不鋪張浪費。非淡泊無以明志,非寧靜無以致遠?!T葛亮《誡子書》一個人須恬淡寡欲方可有明確的志向,須寂寞清靜才能達到深遠的境界3.3百年革命家國情懷同學們,我們今天的美好生活,是許多烈士用鮮血換來的。書中摘錄了一些仁人志士寫給家人的書信。我們一起來讀一讀,邊讀邊思考,你從中體會到了哪些優(yōu)秀家風?熱愛祖國,報效祖國。教師小結:在培育良好家風方面,先輩們?yōu)槲覀冏龀隽税駱?,讓我們學習先輩,傳承良好家風。4.活動園對長輩做一次訪談,了解家風,并在班中交流分享。(三)教師總結:家庭就像社會中的細胞,每一個小家的幸福共同構建起一個和諧的社會。每一個家庭的優(yōu)秀家風,匯聚成中華民族的家風。無論時代如何變化,優(yōu)秀家風都是國家發(fā)展、民族進步與社會和諧的基礎。作業(yè)寫作一篇《我的家風故事》,下節(jié)課分享討論。

  • 人教部編版道德與法制五年級下冊推翻帝制,民族覺醒說課稿

    人教部編版道德與法制五年級下冊推翻帝制,民族覺醒說課稿

    孫中山先生一生都在為推翻帝制,推進民主革命,實現(xiàn)中華民族的偉大復 興而努力,他是一位偉大的革命先驅,值待我們每個人的尊敬與懷念。 活動三:感受孫中山的革命精神(一)學習名言1、出示孫中山先生的名言,指名學生朗讀。2、請學生來說說名言的含義。3、老師幫助解讀,引導學生體悟孫中山先生的革命精神。4、請學生結合孫中山先生的偉大精神,說說對自己的學習生活的啟示。5、齊讀名言。(二)學習鏈接資料1、出示課文中鏈接資料,學生默讀資料。2、討論:說說我們國家目前的巨大變化,暢想祖國的美好未來。3、教師小結今日中華民族的偉大復興與革命先輩們的不斷探求救國救民之路,奮勇抗爭推翻帝制是分不開的,讓我們牢記歷史,以孫中山等革命先驅為榜樣,為祖國的美好未來努力奮斗!

  • 北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程2教案

    北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程2教案

    教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?

  • 北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

    北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

    教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關系?二、導讀:仔細閱讀課本內(nèi)容后完成下面填空:

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數(shù)學下冊商品利潤最大問題2教案

    北師大初中九年級數(shù)學下冊商品利潤最大問題2教案

    (8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?

  • 北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程1教案

    解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關系式,將實際問題轉化為純數(shù)學問題;(2)應用有關函數(shù)的性質作答.

  • 北師大初中九年級數(shù)學下冊切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級數(shù)學下冊切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內(nèi)心的性質,以及圓周角定理.

  • 北師大初中九年級數(shù)學下冊解直角三角形1教案

    北師大初中九年級數(shù)學下冊解直角三角形1教案

    方法總結:解答此類題目的關鍵是根據(jù)題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結:解答此類題目的關鍵是根據(jù)題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.

  • 北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.

  • 北師大初中九年級數(shù)學下冊利用三角函數(shù)測高2教案

    北師大初中九年級數(shù)學下冊利用三角函數(shù)測高2教案

    問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    ③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數(shù)關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

上一頁123...303132333435363738394041下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。