提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

讀《紅巖》等經(jīng)典著作讀后感心得體會

  • 人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(2)

    人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(2)

    它位于三角函數(shù)與數(shù)學變換的結合點上,能較好反應三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (1) 教學設計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結算的利息不少于按月結算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構成等比數(shù)列.解:(1)設這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(1)教學設計

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (2) 教學設計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。

  • 北師大版初中七年級數(shù)學下冊等可能事件的概率說課稿

    北師大版初中七年級數(shù)學下冊等可能事件的概率說課稿

    經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導,幫助學生順利突破難點。)及時表揚答對的學生,因為這個問題整整過了三個世紀,才被意大利著名的天文學家伽利略解決。后來法國數(shù)學家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當?shù)臐B透一些數(shù)學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結:通過這節(jié)課的學習,同學們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現(xiàn)的結果是有限的。(2)、每一結果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。

  • 北師大版初中七年級數(shù)學下冊等可能性事件的概率說課稿

    北師大版初中七年級數(shù)學下冊等可能性事件的概率說課稿

    (3)例題1的設計,一方面是幫助學生從生實際問題背景中逐步建立古典概型的解題模式;另一方面也可進一步理解古典概型的概念與特征,重點突破“等可能性”這個理解的難點。 采用學生分組討論的方式完。在整個活動中學生作為活動設計者、參與者.主持者;老師起到組織和指導的作用。為了讓學生進一步認識和理解隨機思想,認識和理解概率的含義—概率是一種度量,是對隨機事件發(fā)生可能性大小的一種度量.讓學生觀察圖表,得出對稱的規(guī)律。預計學生在構建等可能性事件模型時要花一些時間。(4)例題1的拓展設計:看學生能否能在例1的基礎上利用類比的思想來建構數(shù)學模型,并得出求事件 A包含的基本事件數(shù)常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當?shù)臐B透一些數(shù)學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的

  • 北師大版初中七年級數(shù)學下冊圖形的全等說課稿2篇

    北師大版初中七年級數(shù)學下冊圖形的全等說課稿2篇

    一、教材分析1.教材的地位與作用本節(jié)課是在學生學習了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學習活動,引導學生體驗數(shù)學與生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)良好的學習品質(zhì)。同時這節(jié)課的內(nèi)容也是下一節(jié)學習全等三角以及三角形全等的判定的奠基石,它對知識的聯(lián)系起到承上啟下的作用。2.教學目標依據(jù)《課程標準》要求本階段的學生應初步會運用數(shù)學的思維方式去觀察、分析現(xiàn)實生活中出現(xiàn)的實際問題,體會數(shù)學與生活的密切聯(lián)系,增進對數(shù)學的理解和學好數(shù)學的信心。因此我確立本節(jié)課的教學目標如下:知識技能目標:通過實例,使學生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學生動手操作能力、觀察能力以及合作與交流的能力

  • 北師大版初中數(shù)學八年級下冊不等式的解集說課稿2篇

    北師大版初中數(shù)學八年級下冊不等式的解集說課稿2篇

    說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數(shù)形結合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結,結合板書,引導學生自我總結,重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題

  • 北師大版初中數(shù)學八年級下冊等腰三角形說課稿2篇

    北師大版初中數(shù)學八年級下冊等腰三角形說課稿2篇

    一、說教材:等腰三角形是北師大版初中八年級下冊數(shù)學教材第一章第一節(jié)的教學內(nèi)容,本節(jié)是軸對稱圖形的應用,是研究等腰三角形的開篇。通過本章節(jié)的學習,可以豐富和加深學生對已學圖形的認識,為以后的圖形學習和證明打好基礎。本節(jié)在編排上考慮學生的認知規(guī)律,從學生容易接受的動手操作找規(guī)律開始到幾何畫板的驗證再過渡到幾何證明與應用。根據(jù)課程標準,確定本節(jié)課的目標為:【教學目標】1.知識與能力 理解并掌握等腰三角形的定義,探索等腰三角形的性質(zhì);能夠用等腰三角形的知識解決相應的數(shù)學問題.2.過程與方法通過動手操作、動態(tài)演示等方法,培養(yǎng)學生思考探究數(shù)學的能力;通過例題與練習,提高學生添加輔助線解決問題的能力。3.情感、態(tài)度與價值觀 在探索等腰三角形性質(zhì)的過程中體會軸對稱圖形的美,感受數(shù)學與生活的聯(lián)系;在例題教學中,感受數(shù)學之美;培養(yǎng)學生分析解決問題的能力,使學生養(yǎng)成良好的學習習慣.

  • 北師大版初中數(shù)學八年級下冊不等關系說課稿

    北師大版初中數(shù)學八年級下冊不等關系說課稿

    二、教法分析為了讓學生較好掌握本課內(nèi)容,本節(jié)課主要采用觀察法、討論法等教學方法,通過創(chuàng)設情境,使學生由淺到深,由易到難分層次對本節(jié)課內(nèi)容進行掌握。三、學法分析本課要求學生通過自主地觀察、討論、反思來參與學習,認識和理解數(shù)學知識,學會發(fā)現(xiàn)問題并嘗試解決問題,在學習活動中進一步提升自己的能力。四、教學過程創(chuàng)設問題情景,引入新課活動內(nèi)容:尋找不等的量 課本例一,例二設計目的:學生體會在現(xiàn)實生活中除了存在許多等量關系外,更多的是不等關系的存在,并通過感受生活中的大量不等關系,初步體會不等式是刻畫量與量之間關系的重要數(shù)學模型。經(jīng)歷由具體實例建立不等式模型的過程,進一步發(fā)展學生的符號感與數(shù)學化的能力。課本例四,例五設計目的:培養(yǎng)學生數(shù)學抽象能力,提高把實際問題轉化為數(shù)學問題的能力。六.課堂小結體會 常量與常量間的不等關系變量與常量間的不等關系變量與變量間的不等關系

  • 北師大版初中數(shù)學八年級下冊一元一次不等式組說課稿2篇

    北師大版初中數(shù)學八年級下冊一元一次不等式組說課稿2篇

    1.通過實例體會一元一次不等式組是研究量與量之間關系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會利用數(shù)軸解較簡單的一元一次不等式組。4.培養(yǎng)學生分析、解決實際問題的能力。5.通過實際問題的解決,體會數(shù)學知識在生活中的應用,激發(fā)學生的學習興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數(shù)學的價值。四、教學重、難點分析教學重點:1.理解有關不等式組的概念.2.會解由兩個一元一次不等式組成的不等式組.教學難點:在數(shù)軸上確定解集.五、教學手段分析本節(jié)課采用多媒體教學,利用多媒體教學信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學內(nèi)容,這樣不但可以提高學習效率和質(zhì)量,而且容易激發(fā)學生學習的興趣,調(diào)動積極性。

  • 北師大初中七年級數(shù)學上冊等式的基本性質(zhì)教案1

    北師大初中七年級數(shù)學上冊等式的基本性質(zhì)教案1

    方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結論的嚴密性.

  • 北師大初中七年級數(shù)學上冊等式的基本性質(zhì)教案2

    北師大初中七年級數(shù)學上冊等式的基本性質(zhì)教案2

    教學目標1、知識目標:掌握等式的性質(zhì);會運用等式的性質(zhì)解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應用,培養(yǎng)學生觀察、分析、綜合、抽象能力,獲取學習數(shù)學的方法。3、情感目標:通過學生間的交流與合作,培養(yǎng)學生積極愉悅地參與數(shù)學學習活動的意識和情感,敢于面對數(shù)學活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學重點與難點重點:理解和應用等式的性質(zhì)。難點:應用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學時數(shù) 2課時(本節(jié)課是第一課時)教學方法 多媒體教學教學過程(一) 創(chuàng)設情境,復習導入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學生不用筆算,只能估算)

  • 北師大初中七年級數(shù)學下冊等腰三角形的性質(zhì)教案

    北師大初中七年級數(shù)學下冊等腰三角形的性質(zhì)教案

    方法總結:在等腰三角形有關計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高

  • 北師大初中七年級數(shù)學下冊利用“邊邊邊”判定三角形全等教案

    北師大初中七年級數(shù)學下冊利用“邊邊邊”判定三角形全等教案

    解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉化為三角形的經(jīng)驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數(shù)學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練

上一頁123...8910111213141516171819下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。