提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

鎮(zhèn)鞏固拓展脫貧攻堅成果同鄉(xiāng)村振興有效銜工作總結

  • 【高教版】中職數(shù)學拓展模塊:3.5《正態(tài)分布》教學設計

    【高教版】中職數(shù)學拓展模塊:3.5《正態(tài)分布》教學設計

    教學目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質。教學重點:正態(tài)分布的密度函數(shù)和分布函數(shù)。教學難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質。教學學時:2學時教學過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數(shù)。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。

  • 【高教版】中職數(shù)學拓展模塊:2.2《雙曲線》教學設計

    【高教版】中職數(shù)學拓展模塊:2.2《雙曲線》教學設計

    教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實和解決實際問題中的作用,進一步體會數(shù)形結合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當?shù)淖鴺讼担?3. 教學用具 多媒體4. 標簽

  • 【高教版】中職數(shù)學拓展模塊:2.1《橢圓》優(yōu)秀教學設計

    【高教版】中職數(shù)學拓展模塊:2.1《橢圓》優(yōu)秀教學設計

    本人所教的兩個班級學生普遍存在著數(shù)學科基礎知識較為薄弱,計算能力較差,綜合能力不強,對數(shù)學學習有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識到自己的不足,對數(shù)學課的學習興趣高,積極性強。 學生在學習交往上表現(xiàn)為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協(xié)同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數(shù)學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據(jù)條件求橢圓的標準方程,會根據(jù)橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質,能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用。 1.讓學生經(jīng)歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數(shù)形結合等數(shù)學思想;培養(yǎng)學生運用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學生運用數(shù)形結合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質的對比來提高學生聯(lián)想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數(shù)學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數(shù)學知識的積極態(tài)度. 2.進一步理解并掌握代數(shù)知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 【高教版】中職數(shù)學拓展模塊:3.4《二項分布》教案設計

    【高教版】中職數(shù)學拓展模塊:3.4《二項分布》教案設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.4 二項分布. *創(chuàng)設情境 興趣導入 我們來看一個問題:從100件產(chǎn)品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次數(shù)用表示,求離散型隨機變量的概率分布. 由于是有放回的抽取,所以這種抽取是是獨立的重復試驗.隨機變量的所有取值為:0,1,2,3.顯然,對于一次抽取,抽到不合格品的概率為0.03,抽到合格品的概率為1-0.03.于是的概率(僅求到組合數(shù)形式)分別為: , , , . 所以,隨機變量的概率分布為 0123P 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 一般地,如果在一次試驗中某事件A發(fā)生的概率是P,隨機變量為n次獨立試驗中事件A發(fā)生的次數(shù),那么隨機變量的概率分布為: 01…k…nP…… 其中. 我們將這種形式的隨機變量的概率分布叫做二項分布.稱隨機變量服從參數(shù)為n和P的二項分布,記為~B(n,P). 二項分布中的各個概率值,依次是二項式的展開式中的各項.第k+1項為. 二項分布是以伯努利概型為背景的重要分布,有著廣泛的應用. 在實際問題中,如果n次試驗相互獨立,且各次實驗是重復試驗,事件A在每次實驗中發(fā)生的概率都是p(0<p<1),則事件A發(fā)生的次數(shù)是一個離散型隨機變量,服從參數(shù)為n和P的二項分布. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 實施鄉(xiāng)村建設行動調研報告范文

    實施鄉(xiāng)村建設行動調研報告范文

    鄉(xiāng)村建設,規(guī)劃先行。各省均已出臺村莊規(guī)劃編制技術規(guī)范,**、**等工作基礎較好的省份已基本完成村莊規(guī)劃編制任務,但絕大多數(shù)省份的村莊規(guī)劃編制仍處于試點階段,或初步成果階段,離完成有條件、有需求的村莊應編盡編目標還存在較大差距。從實踐來看,一些實施較好的省份從20**年就開始有序推進村莊規(guī)劃編制工作,但不管是應編盡編的覆蓋面,還是編制任務的完成度,都未達到政策預期。比如,**省僅有8300多個村莊形成了“多規(guī)合一”實用性村莊規(guī)劃編制成果,占全省4.58萬個村莊總數(shù)的18%;**省全面完成了1027個村莊規(guī)劃試點編制任務,但試點村莊僅占全省村莊總數(shù)的11.1%,還有大量有需求的村莊尚待編制規(guī)劃;**省編制了1711個省級美麗鄉(xiāng)村示范村村莊規(guī)劃,同步推進其他2000余個有條件、有需求村莊開展村莊規(guī)劃編制工作,目前只是形成了初步成果。

  • 精編學校開展拓展訓練心得體會與收獲參考范文

    精編學校開展拓展訓練心得體會與收獲參考范文

    拓展訓練一下子使我對前途的挑戰(zhàn)欲望猛然增強。在工作中,業(yè)務的拓展往往無法預見其結果,使自己裹足不前。但拓展訓練使自己猛然醒悟到在今后的工作中,不要因為不可認知而畏懼,不要因從來未嘗試過而輕言放棄。一個人對自身的認識往往是有保留的,對自己的潛能認識是模糊的、低估的。拓展訓練使自己更清晰地認識到自己身上潛伏的能量,增強了自己克服困難,迎接挑戰(zhàn)的信心與決心。通過拓展訓練,我重新認識到了自身的潛能,也將把這種潛力發(fā)揮到以后的工作中。

  • 精編企業(yè)團隊拓展活動培訓后個人心得體會合集

    精編企業(yè)團隊拓展活動培訓后個人心得體會合集

    2.盲人方陣感悟:  團隊中溝通協(xié)作精神很重要,做任何事情之前先要理性分析一下如何做,然后做好有效的溝通,溝通的時候要注意說話的方式和語言環(huán)境,充分信任你的團隊,必要的時候要注意聆聽團隊其他成員的意見和建議,弄明白每個小團隊的任務是什么,團隊要達到的整體目標又是什么,每個小團隊在完成自己目標的同時要懂得相互配合協(xié)作共同去完成團隊的整體目標?! ?.無軌電車感悟:  團隊中每個人的步伐和整個隊伍的步伐是密切聯(lián)系的,如果自己步伐和團隊步伐不一致,那么,不單是自己落伍,而是給整個團隊增加阻力。在團隊中每個人都要清楚了解自己的責任,做好自己的本份."沒有最好的個人,只有最好的團隊"!整個團隊所有的人齊心協(xié)力,整個團隊共同進退,才能走向勝利!

  • 關于學校戶外團隊拓展訓練心得體會優(yōu)選八篇

    關于學校戶外團隊拓展訓練心得體會優(yōu)選八篇

    “蛟龍出?!笔强简炍覀儓F隊的凝聚力、創(chuàng)造力、想象力、反映能力、領導能力。我們要先分隊、選出隊長和參謀長、取隊名、選隊歌、自設隊旗。這樣我們便開始了比賽,我們都相互把腳綁在一起,然后一起橫著走。由于種種失誤,很不幸我們隊在這次比賽中我們失敗了。我們沉默著,我們反思著,失敗的痛楚無法形容。人生就是這樣,是現(xiàn)實的,我們不得不接受。但也讓我們大家學會了很多,明白了很多,我們要時刻準備著,我們才能有機會贏。

  • 【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1)  (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案設計

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案設計

    教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點

  • 【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設計

    【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數(shù)在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關系呢? c 圖1-7 當三角形為鈍角三角形時,不妨設角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標系,則 兩邊取與單位向量的數(shù)量積,得 由于設與角A,B,C相對應的邊長分別為a,b,c,故 即 所以 同理可得 即 當三角形為銳角三角形時,同樣可以得到這個結論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領 學生 總結 20

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經(jīng)常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40

  • 【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上?!貞c. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設計

    【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設計

    一、定義:  ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 人教版高中歷史必修2殖民擴張與世界市場的拓展教案

    人教版高中歷史必修2殖民擴張與世界市場的拓展教案

    ●活動與探究從葡萄牙、西班牙、荷蘭的興衰歷程,從英國的強盛歷程,我們從中可獲得什么啟示?啟示:積極發(fā)展本國的工商業(yè);實現(xiàn)制度創(chuàng)新;抓住機遇,及時更新觀念;建立能保障自身經(jīng)濟順利發(fā)展的國防力量,尤其是海軍力量;積極發(fā)展海外貿(mào)易,實行對外開放……★本課小結16世紀后期荷蘭積極向海外殖民擴張,在17世紀建立了世界范圍內的殖民帝國;17世紀開始,英國也積極向海外殖民擴張,并與荷蘭、法國進行了激烈的爭奪,到18世紀中期,英國成為世界上最大的殖民國家,最終確立了世界殖民霸權;新航路開辟后,伴隨著殖民擴張,人類的商業(yè)活動開始在全球范圍內開展,人類的經(jīng)濟活動由于世界市場的出現(xiàn)而第一次被廣泛地聯(lián)系在一起,而西歐國家對殖民地財富、資源、勞動力的暴力掠奪,是歐洲發(fā)展和興旺的重要條件,也是亞、非、拉美災難的根源。

  • 大班語言教案:城市老鼠和鄉(xiāng)村老鼠 大班語言綜合活動

    大班語言教案:城市老鼠和鄉(xiāng)村老鼠 大班語言綜合活動

    一、活動目標1、欣賞圖片,感受城市、鄉(xiāng)村各具特色的美景和生活。2、在辯論活動中了解城市和農(nóng)村的不同生活方式,懂得適合自己的才是最好的。二、 活動準備:1、事先安排幼兒參觀城市或者鄉(xiāng)村,布置主題墻面的城市和鄉(xiāng)村的圖片。2、情景童話劇表演,布置場地。3、動畫制作。4、城市和鄉(xiāng)村的圖片若干張

  • 【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設計

    【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設情境 興趣導入 問題 兩角和的余弦公式內容是什么? 兩角和的余弦公式內容是什么? 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 5*動腦思考 探索新知 由同角三角函數(shù)關系,知 , 當時,得到 (1.5) 利用誘導公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應使式子的左右兩端都有意義. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進行轉換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應用公式.要注意應用這種變形方法來解決問題. 引領 講解 說明 引領 分析 說明 啟發(fā) 引導 啟發(fā) 分析 觀察 思考 主動 求解 觀察 思考 理解 口答 注意 觀察 學生 是否 理解 知識 點 學生 自我 發(fā)現(xiàn) 歸納 25

  • 北師大版初中數(shù)學九年級下冊弧長和扇形的面積的拓展與延伸說課稿

    北師大版初中數(shù)學九年級下冊弧長和扇形的面積的拓展與延伸說課稿

    五、教學反思:時鐘的秒針、分針、時針掃的圖形, 汽車擋風玻璃的刮水器;刷工人刷過的面積近似看為扇形。圓中的計算問題---弧長和扇形的面積,雖然新課標、新教材要求學習,但本節(jié)教師結合學生的實際要求,將其作為內容進行拓展與延伸,具有一定的實際意義。用生活中動態(tài)幾何解釋扇形,體驗解決問題策略的多樣性,發(fā)展實踐能力與創(chuàng)新精神。本節(jié)課,教師通過“扇子”的問題情景引入新課,它蘊含了大量的情感信息,有效激發(fā)學生的求知欲望,充分調動學生的學習積極性,注重學生的參與,讓出時間與空間由學生動手實踐,鼓勵學生自主探索、合作交流、展示成果,提高了學生發(fā)現(xiàn)問題、提出問題、解決問題的能力。用“扇子變化”,幫助學生探索自然界中事物的動靜結合問題,利用“扇子的文化”的新奇感激起學生的學習熱情,陶冶了學生的學習情操,從而使學生更深切地理解問題,使原本單調枯燥的數(shù)學變得生動、形象,激發(fā)學生的情感,使課堂充滿生機。

上一頁123...282930313233343536373839下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。