提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

新人教版高中英語必修3Unit 5 The value of moneyReading and Thinking教學設計二

  • 李商隱詩兩首教學設計教案

    李商隱詩兩首教學設計教案

    我們不妨將主旨放在“莊生曉夢迷蝴蝶,望帝春心托杜鵑。滄海月明珠有淚,藍田日暖玉生煙?!倍?lián)之前,那么,事情就變得簡單起來了:華年如莊生曉夢迷蝴蝶;華年如望帝春心托杜鵑;華年如滄海月明珠有淚;華年如藍田日暖玉生煙。從課下注釋,我們很容易就可以看出,這四句每一句都在用典。因此,我們通過對典故的解讀,然后加以整理,將其理順,似乎就可以完成對詩歌內(nèi)容的解讀;至于什么悼亡、愛情,不妨拋之腦后,畢竟,沒有那些其他的主題,也并沒有讓詩歌失色,而加上這些捉摸不定的主題,只是讓詩歌增加了所謂的神秘色彩,徒增閱讀難度而已。

  • 數(shù)據(jù)的整理教案教學設計

    數(shù)據(jù)的整理教案教學設計

    一、課前準備師:同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?學生:我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍,適合什么人穿,但肯定與身高、胖瘦有關.師:這位同學很善動腦,也愛觀察.S代表最小號,身高在150~155cm的人適合穿S號.M號適合身高在155~160cm的人著裝……廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).你覺得這種生產(chǎn)方法有什么優(yōu)點?學校要為同學們訂制校服,為此小明調(diào)查了他們班50名同學的身高,結(jié)果(單位cm).如下

  • 《將進酒》教案教學設計

    《將進酒》教案教學設計

    (一)知識與能力 1、指導學生基本掌握誦讀本詩的要領,培養(yǎng)學生聲情并茂、準確傳達情感的誦讀能力. 2、幫助學生初步了解“初讀—精讀—悟讀—美讀”的詩歌鑒賞方法,培養(yǎng)學生鑒賞古典詩歌的能力。(二)、情感態(tài)度與價值觀 1、走近李白的激情、浪漫、詩性和放達,感受全詩恢宏的氣魄。 2、激發(fā)學生與文本、文人和文化的親近之情

  • 感受可能性教案教學設計

    感受可能性教案教學設計

    (一)、創(chuàng)設情景,導入新課摸牌游戲:三位同學持三組牌,指定三位同學分別任意摸出一張,看誰能摸到紅牌,他們一定能摸到紅牌嗎?請手持牌的同學根據(jù)自已手中牌的情況,用語言描述一下抽出紅牌的情況??偨Y(jié):在一定條件下,有些事情我們事先能肯定它一定發(fā)生,這些事情成為 事件。有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為 事件。 事件和 事件統(tǒng)稱為確定事件。許多事情我們事先無法肯定它會不會發(fā)生,這些事情稱為 事件,也稱為 事件。

  • 有理數(shù)復習教案教學設計

    有理數(shù)復習教案教學設計

    3)乘除運算①有理數(shù)的乘法法則:(老師給出,學生一起朗讀)1. 兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;2. 任何數(shù)與零相乘都得零;3. 幾個不等于零的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個數(shù),積為負;當負因數(shù)的個數(shù)為偶數(shù)個時,積為正;4. 幾個有理數(shù)相乘,若其中有一個為零,積就為零。②有理數(shù)的除法法則:(老師提問,學生回答)1. 兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除;2. 除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。③關系(老師給出)除法轉(zhuǎn)化為乘法進行運算。

  • 好玩的磁鐵教案教學設計

    好玩的磁鐵教案教學設計

    中班的幼兒開始愿意探究新異的事物或現(xiàn)象來滿足自己的好奇心,所以,我們的科學活動設計要在淺顯易懂,適合中班幼兒年齡特征的同時,引發(fā)幼兒對科學的初步探究能力。中班的幼兒已經(jīng)具有注意到新異事物或現(xiàn)象的,因此,我們在設計科學活動時要讓幼兒充分發(fā)揮想象,對磁鐵這種“新異”事物提出問題,如什么是磁鐵?什么時候看見過磁鐵?等等類似的問題,可以增強幼兒的探索興趣,提高幼兒的探索的積極性,有利于激發(fā)幼兒的想象力?! ≈邪嘤變褐饕跃唧w形象為主,需要具體的活動場景和活動形式,所以活動設計要提供幼兒合適的情景以提供操作思考的機會,進一步發(fā)展幼兒的自主性和主動性。中班幼兒與小班幼兒相比,活動時間也有所增加,因此也需要在活動時間上給予一定的保證。

  • 圖形的全等教案教學設計

    圖形的全等教案教學設計

    教法分析:在新課程的教學中教師要向?qū)W生提供從事數(shù)學活動的機會,倡導讓學生親身經(jīng)歷數(shù)學知識的形成與應用過程,鼓勵學生自主探索與合作交流,讓學生在實踐中體驗、學習。因此,本節(jié)課我采用了多媒體輔助教學與學生動手操作、觀察、討論的方式,一方面能夠直觀、生動地反映各種圖形的特征,增加課堂的容量,吸引學生注意力,激發(fā)學生的學習興趣;另一方面也有利于突出重點、突破難點,更好地提高課堂效率。學法分析:初二年級學習對新事物比較敏感,通過新課程教學的實施,學生已具有一定探索學習與合作交流的習慣。但是一下子要學生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導學生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動手實驗;三要把自己的所思所想大膽地進行交流,從而得出正確的結(jié)論,并掌握知識。

  • 反比例函數(shù)教案教學設計

    反比例函數(shù)教案教學設計

    本節(jié)的內(nèi)容主要是反比例函數(shù)的概念教學.反比例函數(shù)概念的建立,不能從形式上進行簡單的抽象與概括,而是對這些實例從不同角度抽象出本質(zhì)屬性后,再進行概括。教材設計的基本思路是從現(xiàn)實生活中大量的反比例關系中抽象出反比例函數(shù)概念,讓學生進一步感受函數(shù)是反映現(xiàn)實世界中變量關系的一種有效數(shù)學模型,逐步從對具體反比例函數(shù)的感性認識上升到對抽象的反比例函數(shù)概念的理性認識. 同時本節(jié)的學習內(nèi)容,直接關系到本章后續(xù)內(nèi)容的學習,也是繼續(xù)學習其它各類函數(shù)的基礎,其中蘊涵的類比、歸納、對應和函數(shù)的數(shù)學思想方法,對學生今后研究問題、解決問題以及終身的發(fā)展都是非常有益的.基于以上分析,本節(jié)教學設計是建立在一個個數(shù)學活動的基礎上,經(jīng)過對情境理解、本質(zhì)抽象的積累而形成的.讓學生對一類問題情境中兩個變量間的關系,在充分經(jīng)歷寫表達式,計算函數(shù)值和觀察函數(shù)值隨自變量變化規(guī)律的過程中,逐步概括形成反比例函數(shù)的概念.針對教學實際,我選取了貼學生現(xiàn)實的,有價值的實例“文具店里買學習用品”和“剪面積為定值的長方形紙片”等作為問題情境.

  • 《將進酒》教案教學設計

    《將進酒》教案教學設計

    教師活動 學生活動設計意圖 情境導入:教師配樂敘述詩歌創(chuàng)作背景投入傾聽 盡可能調(diào)動學生情緒誦讀入境:“讀李詩者于雄快之中得其深遠宕逸之神,才是謫仙人面目”(投影展示)教師范讀,醞釀情感(播放配樂)1、學生自讀感知詩韻 2、學生齊讀進入詩境 調(diào)動學生積極性,誦讀時用自己的情緒感染學生精讀涵詠:教師就詩歌內(nèi)容進行提問,李白怎樣喝酒,勸朋友喝酒的方式、原因,他有那些愁并說明理由,并按照自己的理解誦讀。教師必要時給出相應的提示。投影展示:人生苦短 懷才不遇 交流研討誦讀 引導學生從詩句入手,疏通詩意,把握情感

  • 李商隱詩兩首教學設計

    李商隱詩兩首教學設計

    《錦瑟》的主旨頗多,悼亡、戀情、自傷身世,每一種都有其支持者的長篇論述,但其首聯(lián)中“一弦一柱思華年?!睆倪@個角度來看,似乎將主題定調(diào)為對“華年”的追思,似乎更為妥帖。當我們有了一個明確的基調(diào)之后,后面幾聯(lián)在解讀時就有了一個準確的方向。

  • 小學美術人教版一年級上冊《第5課五彩的煙花》教學設計模板說課稿

    小學美術人教版一年級上冊《第5課五彩的煙花》教學設計模板說課稿

    2學情分析一年級學生對美術的興趣很高,對五顏六色的物體特別感興趣,孩子們課前做的準備很好。3重點難點1.節(jié)日里煙花的畫法。2.油畫棒和水彩顏料相結(jié)合的涂色技巧。教學活動活動1【活動】教案第5課五彩的煙花

  • 點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學設計人教A版高中數(shù)學選擇性必修第一冊

    傾斜角與斜率教學設計人教A版高中數(shù)學選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設Q(0,y),如圖,點B(4,3)關于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).

  • 兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

上一頁123...8910111213141516171819下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。