
故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過(guò)程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過(guò)程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?

(一)復(fù)習(xí)舊知,導(dǎo)入新課。1、師:同學(xué)們,你們還記得《烏鴉喝水》的故事嗎?我們先來(lái)看一看這個(gè)故事吧?。ㄕn件第2張播放視頻《烏鴉喝水》)【設(shè)計(jì)意圖】用視頻引入課題,激發(fā)學(xué)生的學(xué)習(xí)興趣。2、烏鴉是怎么喝到水的?為什么?(課件第3張)生1:烏鴉把石子投進(jìn)水罐中,水面升高了,烏鴉就喝到水了。生2:這說(shuō)明石子占了一定的空間,所以水面會(huì)升高,烏鴉才能喝到水。師:這節(jié)課我們就來(lái)研究一下體積和體積單位。(板書課題)(二)探究新知1.小組實(shí)驗(yàn)并觀察:(課件地4張)(1)取兩個(gè)同樣大小的玻璃杯,先往一個(gè)杯子里倒?jié)M水;取一塊鵝卵石放入另一個(gè)杯子,再把第一個(gè)杯子里的水倒進(jìn)第二個(gè)杯子里,會(huì)出現(xiàn)什么情況?為什么?(2)匯報(bào)交流:(課件第5張)生1:第一個(gè)杯子里的水不能全部倒入第二個(gè)杯子里。師:你知道為什么會(huì)出現(xiàn)這種現(xiàn)象嗎?生2:鵝卵石占了一定的空間,所以第一個(gè)杯子會(huì)剩下一部分水?!驹O(shè)計(jì)意圖】用實(shí)驗(yàn)的方式,讓學(xué)生從實(shí)驗(yàn)的過(guò)程中發(fā)現(xiàn)現(xiàn)象并進(jìn)一步思考原因,從而找到規(guī)律,培養(yǎng)學(xué)生的觀察能力、思維能力。2.下面的洗衣機(jī)、影碟機(jī)和手機(jī),哪個(gè)所占的空間大?(課件第6張)洗衣機(jī)所占的空間最大。3.引入體積的意義:師:物體所占空間的大小叫做物體的體積。師:上面三個(gè)物體,哪個(gè)體積最大?哪個(gè)體積最小? 生:洗衣機(jī)的體積最大,手機(jī)的體積最小。4.學(xué)習(xí)體積單位(課件第7張)(1)怎樣比較下面兩個(gè)長(zhǎng)方體體積的大小呢?

本章是第三章第一節(jié)的開端,學(xué)生在第二節(jié)已經(jīng)學(xué)習(xí)了元素的組成和一些生物大分子,本節(jié)課內(nèi)容是學(xué)會(huì)使用顯微鏡,這是生物學(xué)習(xí)過(guò)程中最為重要的一種手段之一。對(duì)于今后的實(shí)驗(yàn)學(xué)習(xí)有著極其重要的作用。 學(xué)生中大部分同學(xué)在初中階段都有接觸過(guò)光學(xué)顯微鏡,所以在學(xué)習(xí)理論知識(shí)的時(shí)候能夠順利的進(jìn)行,但因?yàn)閷W(xué)校的條件有限,不能保證同學(xué)們進(jìn)行顯微鏡的實(shí)驗(yàn),本節(jié)課結(jié)合學(xué)生情況和實(shí)際情況,采用圖片和模型展示的方法進(jìn)行。 知識(shí)與能力 1、概述細(xì)胞學(xué)說(shuō)建立的過(guò)程。 2、概述細(xì)胞學(xué)說(shuō)的內(nèi)容和意義。 3、學(xué)習(xí)制作臨時(shí)玻片標(biāo)本,使用顯微鏡和繪圖的能。

(一)復(fù)習(xí)舊知,導(dǎo)入新課。師:同學(xué)們,上節(jié)課我們認(rèn)識(shí)了體積和體積單位,請(qǐng)你填一填這兩道題,看看你學(xué)得怎么樣。(課件第2張)1.常用的體積單位有(立方厘米)、(立方分米)、(立方米),可以分別寫成(cm³) 、(dm³)、 (m³)。2.棱長(zhǎng)是1cm的正方體,體積是(1cm³)。3.棱長(zhǎng)是1dm的正方體,體積是(1dm³)。4.棱長(zhǎng)是1m的正方體,體積是(1m³)?!驹O(shè)計(jì)意圖】1dm³是多少cm³呢?這節(jié)課我們就來(lái)研究一下體積單位間的進(jìn)率。(板書課題)(二)探究新知1.探究立方分米和立方厘米間的進(jìn)率:(課件第3張)(1)下圖是一個(gè)棱長(zhǎng)為1dm的正方體,體積是1dm³。想一想,它的體積是多少立方厘米呢?(2)小組討論,你是怎樣想的?(3)匯報(bào)交流:(課件第4張)生1:如果把它的棱長(zhǎng)看作是10cm,可以把它切成1000塊1cm³的小正方體。10×10×10=1000.生2:它的底面積是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【設(shè)計(jì)意圖】用小組討論的方式,讓學(xué)生從討論的過(guò)程中找到解決問(wèn)題的方法,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力、思維能力。2.你知道1m³等于多少立方分米嗎?(課件第5張)生1:把棱長(zhǎng)是1m的正方體,看作棱長(zhǎng)是10dm的正方體,10×10×10=1000dm³。1m³=1000dm³。 生2:棱長(zhǎng)是1m的正方體,底面積是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理計(jì)量單位之間的進(jìn)率。(1)小組討論:到現(xiàn)在為止,我們已經(jīng)學(xué)習(xí)了哪些計(jì)量單位?請(qǐng)整理在表中。

【教學(xué)程序】(一)導(dǎo)入:1.聽(tīng)《烏鴉喝水》的小故事。2.揭題:師:你知道烏鴉是通過(guò)什么方法喝到水的嗎?這蘊(yùn)涵了什么道理?這就是今天我們要學(xué)習(xí)的新課題《體積單位》。(出示課題)(二)教學(xué)“體積單位”。師出示圖,請(qǐng)生比一比誰(shuí)的體積大?[說(shuō)明:教師通過(guò)兩個(gè)長(zhǎng)方體體積大小的比較,學(xué)生發(fā)現(xiàn)不好比較,從而指出計(jì)量物體的體積要用統(tǒng)一的體積單位。從而引入“體積單位”的教學(xué)]師:為了更準(zhǔn)確的比較圖中這兩個(gè)長(zhǎng)方體體積的大小,我們可以把它們切成若干個(gè)同樣大小的正方體,只要數(shù)一數(shù),每個(gè)長(zhǎng)方體包含有幾個(gè)這樣的小正方體,就能準(zhǔn)確地比出它們的大小。請(qǐng)生數(shù)一數(shù),告訴老師誰(shuí)的體積比較大?學(xué)生匯報(bào)(注意讓學(xué)生說(shuō)出數(shù)的方法)。師:像計(jì)量長(zhǎng)度需要長(zhǎng)度單位,計(jì)量面積需要面積單位,我們計(jì)量體積也需要有“體積單位”。為了更準(zhǔn)確地計(jì)量出物體體積的大小,我們可以像圖中這樣用同樣大小的正方體作為體積單位。

1.要有充分的直觀操作。學(xué)生思維的特點(diǎn)一般的是從感性認(rèn)識(shí)開始,然后形成表象,通過(guò)一系列的思維活動(dòng),上升到理性認(rèn)識(shí)。本課的教學(xué)采用直觀操作法,是一個(gè)重要的環(huán)節(jié)。2.啟發(fā)學(xué)生獨(dú)立思考。學(xué)生是學(xué)習(xí)的主體,只有引導(dǎo)學(xué)生獨(dú)立地發(fā)現(xiàn)問(wèn)題、思考問(wèn)題、解決問(wèn)題,才能收到事半功倍的教學(xué)效果。3.講練結(jié)合。4.充分運(yùn)用知識(shí)的遷移規(guī)律,引導(dǎo)學(xué)生掌握新知識(shí)。教學(xué)過(guò)程:三、說(shuō)教學(xué)過(guò)程:(一)、創(chuàng)設(shè)情境上課前,教師先給大家講一個(gè)與今天的學(xué)習(xí)內(nèi)容有關(guān)的故事,希望同學(xué)們認(rèn)真地聽(tīng)、認(rèn)真地想。故事是這樣的:大象過(guò)生日啦!那天來(lái)了很多的朋友,有小兔、小猴等等等等,可熱鬧啦!在眾多的朋友中只數(shù)小兔最高興,它樂(lè)什么呢?原來(lái)它知道了蛋糕的分配方案,認(rèn)為自己分的蛋糕比小猴的大。蛋糕是這樣分配的:分給小兔的蛋糕是棱長(zhǎng)10厘米的正方體,分給小猴的蛋糕是棱長(zhǎng)1分米的方體。(分別出示兩塊同樣大小的正方體,用10厘米和1分米表示它們的棱長(zhǎng))

第三十一條有下列情形之一的,甲方解除本合同,應(yīng)根據(jù)乙方在甲方工作年限,每滿1年支付乙方相當(dāng)于甲方上年月平均工資1個(gè)月工資的經(jīng)濟(jì)補(bǔ)償金,不滿1年的按1年計(jì)算,如乙方解除本合同前12個(gè)月的平均工資高于甲方上年月平均工資,按本人月平均工資計(jì)發(fā):(一)乙方患病或者非因工負(fù)傷,不能從事原工作也不能從事甲方另行安排的工作的;(二)本合同訂立時(shí)所依據(jù)的客觀情況發(fā)生重大變化,致使合同無(wú)法履行,經(jīng)甲乙雙方協(xié)商不能就變更本合同達(dá)成協(xié)議的;(三)甲方裁減人員的。第三十二條甲方向乙方支付的經(jīng)濟(jì)補(bǔ)償金的計(jì)發(fā)標(biāo)準(zhǔn)不得低于北京市最低工資。

負(fù)責(zé)對(duì)合同標(biāo)的物進(jìn)行定期檢查。租賃有效期內(nèi)由不歸責(zé)于乙方的原因?qū)е挛菝媛┧?、房屋裂縫由甲方負(fù)責(zé)維修并承擔(dān)相關(guān)費(fèi)用,以保障乙方安全和正常使用;由此對(duì)乙方造成的損壞和損失,甲方不負(fù)有修繕和賠償?shù)牧x務(wù)。

一要落實(shí)安全生產(chǎn)主體責(zé)任。企業(yè)主要負(fù)責(zé)人是本企業(yè)第一責(zé)任人,既要對(duì)企業(yè)生產(chǎn)經(jīng)營(yíng)負(fù)責(zé),又要對(duì)企業(yè)安全生產(chǎn)負(fù)責(zé)。分管領(lǐng)導(dǎo)也要分工明確,各負(fù)其責(zé),共同承擔(dān)起安全管理的責(zé)任。要層層建立安全生產(chǎn)責(zé)任制,把安全生產(chǎn)責(zé)任逐級(jí)分解延伸,落實(shí)到每個(gè)生產(chǎn)經(jīng)營(yíng)環(huán)節(jié)、每個(gè)崗位、每個(gè)人,使安全生產(chǎn)真正成為一項(xiàng)自覺(jué)行動(dòng)。

Lorem ipsum dolor: sit ametconsectet gelit. it ellentesque eleife ornare ipsun enunc pulvinati ncidunt.quis pul vinar mellu Lorem ipsum dolor: sit amet consectet gelit. itellentesque eleife ornare ipsun enunc pulvinati ncidunt. quis pul vinar mellu。Loremipsum dolor: sit amet consectet gelit. it ellentesque eleife ornare ipsun enuncpulvinati ncidunt. quis pul vinar mellu.

一起聊天,而且我們軍訓(xùn)時(shí)因?yàn)橐俺雎曇簦坦倥挛覀兒韲挡贿m服,特意給我們買了潤(rùn)喉糖給我們吃,而且怕我們暈倒,還給我們買個(gè)鈣片吃,雖然她有時(shí)對(duì)我們很嚴(yán)厲,但她和小班們總是督促著我們吃飯,怕我們訓(xùn)練會(huì)暈倒。 走步時(shí),我們走了一個(gè)下午,還是走不齊,但教官還是很耐心,到了很晚的時(shí)候,我們還是走不齊,教官怕我們餓肚子就讓我們?nèi)コ燥?。直到?huì)操時(shí),我們的動(dòng)作變得很整,我們開始有了整體的感覺(jué)。

問(wèn)題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

問(wèn)題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延伸.拋物線是無(wú)界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為

1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。