
2學(xué)情分析四年級的學(xué)生正處于素質(zhì)教育的階段,學(xué)生對美術(shù)正逐步深入了解,并掌握了一些美術(shù)基礎(chǔ)知識和基本技能,多數(shù)同學(xué)對美術(shù)興趣濃厚,有較強的求知欲和教強的創(chuàng)新力,學(xué)生的美術(shù)素質(zhì)得到進一步提高。3重點難點教學(xué)重點:讓學(xué)生從大自然和生活的萬物中發(fā)現(xiàn)線條的幾種變化,發(fā)現(xiàn)圓點在紙上的不同位置產(chǎn)生的不同感覺。

2重點難點教學(xué)重點第一課時:了解繪畫故事的表現(xiàn)特點,感受真、善、美。第二課時:繪畫自編故事的創(chuàng)作特點及步驟。教學(xué)難點第一課時:選材、構(gòu)思設(shè)計。第二課時:構(gòu)圖與繪制3教學(xué)過程3.1 第一課時教學(xué)活動活動1【導(dǎo)入】“連連看” 教師提供數(shù)張圖片和幾句話(或幾段文字),請學(xué)生根據(jù)文字找到相應(yīng)的圖畫將它們連起來,并找出先后順序?qū)⒐适轮v完整。教師小結(jié),出示課題《圖文并茂》。設(shè)計意圖:以游戲的形式“連一連”,激發(fā)學(xué)生的好奇心和興趣,以飽滿的熱情投入學(xué)習(xí)內(nèi)容——圖文并茂。

1、通過欣賞各式各樣的帽子的基本結(jié)構(gòu)和作用。了解帽子制作的基本過程。2、通過教學(xué)是學(xué)生初步掌握裝飾的基本方法(折、剪貼、插接、鏤空等),提高他們的語言表達能力。3、教師鼓勵學(xué)生積極參與游戲和制作,努力使自己的帽子與眾不同,體驗制作過程的樂趣。3學(xué)情分析從學(xué)生掌握知識的角度看,他們已經(jīng)掌握了基本的手工制作方法,而本學(xué)期學(xué)生通過了前面的剪紙的練習(xí),這使他們的動手能力進一步提高,因此為本課打下了良好的基礎(chǔ)。從學(xué)生的特征看,這個年齡段的孩子對手工有著濃厚的興趣,喜歡嘗試制作新奇的東西。但部分基礎(chǔ)差的同學(xué)缺乏耐性和信心。教師對于這種情況,可利用優(yōu)秀作品為參照物激發(fā)其靈感,鼓勵創(chuàng)作。

2學(xué)情分析二年級學(xué)生活潑可愛,思維獨特,喜歡按照自己的想法自由地表現(xiàn)畫面。好奇心強,愛表現(xiàn)自己,但動手能力較差,只能用簡單的工具和繪畫材料來稚拙地表現(xiàn)自己的想法。本課以學(xué)生親切、熟悉的名字為題材,更好的激發(fā)學(xué)生的表現(xiàn)欲望和獨創(chuàng)思維,讓學(xué)生能夠自信、大膽、自由地通過美術(shù)形式表達想法與感情。3重點難點重點:設(shè)計具有自己特色的名字。難點:能對名字的字形進行分析,巧妙地運用筆畫特征進行想象設(shè)計。教學(xué)活動

2學(xué)情分析1、學(xué)生學(xué)習(xí)美術(shù)的態(tài)度:很多學(xué)生上美術(shù)課時會抱著“玩”的心理,針對學(xué)生的這種思想,我們應(yīng)當(dāng)根據(jù)學(xué)生的年齡特點,在備課過程中注意挖掘教材中有趣的內(nèi)容,尋找學(xué)生的興趣點,充分地讓美術(shù)教學(xué)體現(xiàn)出身心愉悅的活動特點,寓教于樂,防止把美術(shù)課變成一種枯燥的令人生厭的勞動。2、學(xué)生認知發(fā)展分析:在美術(shù)課堂上常常聽到這樣的聲音:“我畫(做)不好”、“我不會畫(做)”;這就需要美術(shù)教師在課堂教學(xué)中注重引導(dǎo)學(xué)生感受、觀察、體會、表現(xiàn),讓學(xué)生在一系列“玩中學(xué)”的活動過程中慢慢樹立信心。所以圍繞本課教學(xué)目的和任務(wù),我采用情境教學(xué)法、觀察對比法、直觀演示法三種教學(xué)方式;學(xué)生運用四種方法進行學(xué)習(xí):觀察法、討論法、實踐體驗法、合作交流法;努力營造一個開放和諧的課堂氛圍,順利完成教學(xué)目標。

活動1【導(dǎo)入】談話引入設(shè)計意圖:這一環(huán)節(jié),是一首小詩來激發(fā)學(xué)生的離別情感,勾起學(xué)生對小學(xué)六年生活的美好回憶,從而導(dǎo)入新課。同學(xué)們,今天老師給大家?guī)淼牟皇敲利惖膱D畫,而是一首我寫的詩,你們誰愿意來第一個來欣賞一下。出示課件1:學(xué)生配樂朗讀:每到六年級心里就有些難過你們就要離開而我剛剛收獲我不知道你們將來會怎樣生活你們總說你們永遠永遠記得我

(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).

一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

2學(xué)情分析可以說動漫卡通一直伴隨著孩子們的成長,每個孩子都十分喜愛看動漫卡通,尤其是現(xiàn)在的兒童更是在動漫卡通世界里成長的一代,所以學(xué)生對動漫卡通形象并不陌生。本課通過大量學(xué)生喜歡的動漫卡通形象的欣賞,掌握動漫卡通畫形象的創(chuàng)作表現(xiàn)方法。3重點難點教學(xué)重點:感受動漫卡通形象靈動多變的造型之美,并體會創(chuàng)作的樂趣。教學(xué)難點:利用學(xué)到的知識,進行動漫卡通形象表現(xiàn)。

一、談話導(dǎo)入:師:咱們班今天是誰的值日生?。繉W(xué)生反饋(教師請值日的學(xué)生回答并根據(jù)班級衛(wèi)生情況做出簡單評價或表揚。)師:今天的值日生表現(xiàn)非常棒,值日工作做的很好,希望其他同學(xué)向他(她)學(xué)習(xí)。那你們想不想把我們值日時的場面畫在紙上呢?今天就讓我們來學(xué)習(xí)第七課《今天我值日》。(打開課件)生:學(xué)生打開課本第七課《今天我值日》。

1.展示海洋魚類圖片,并導(dǎo)入課題。師:夏季炎熱的天氣已經(jīng)開始了,老師帶來了一份涼爽禮物想送大家,你們猜猜是什么呢?生:……師:想知道嗎?這份禮物就是幾張美麗的圖片,請看大屏幕:在深藍色的海底世界里,一群可愛的海洋魚在悠閑地游來游去,好涼快,好舒服呀。喜歡這個禮物嗎? 生:…… 師:喜歡呀,老師太高興了。同學(xué)們再來看一看,在這幾張漂亮的圖片里,除了讓我們感受到大海的涼爽和美麗之外,你還發(fā)現(xiàn)什么了嗎?

2學(xué)情分析中國傳統(tǒng)繪畫,源遠流長,扎根于中華民族深厚的文化土壤之中。學(xué)習(xí)中國畫,對繼承和發(fā)揚我國民族繪畫,有著非常重要的意義和作用。本課是在學(xué)生以前學(xué)習(xí)中國畫基礎(chǔ)上的進一步學(xué)習(xí)。中國畫的門類很多,形式風(fēng)格多樣,彩墨畫就是在水墨畫的基礎(chǔ)上發(fā)展而來的。而彩墨畫特殊的風(fēng)格和表現(xiàn)方法,是兒童藝術(shù)活動充滿趣味的重要部分,用慣了彩筆、蠟筆的學(xué)生們對中國畫有著強烈的興趣。教材中選取了黃永玉先生的《紅荷圖》,畫面中一朵朵荷花色彩奔放,線條樸拙生動,墨色在畫面中自然融合,層次分明。作品中的荷花一改往日中國畫清新淡雅的風(fēng)格,嬌艷欲滴的色彩讓人為之傾倒。此外,教材中精選的朱德群的《無題》、何韻蘭的《綠殤》,也較好地展現(xiàn)了中國畫的筆墨及用色特點。墨的濃淡干濕、墨色的融合交錯、運筆的輕重緩急,會產(chǎn)生豐富的畫面效果。另外,教師也可讓學(xué)生通過教科書中的技法圖來進一步了解認識彩墨畫。

2學(xué)情分析這是一個學(xué)生比較感興趣的內(nèi)容,通過學(xué)習(xí)不僅能提高學(xué)生的學(xué)習(xí)欲望,更希望能根據(jù)一句話或者一段話以畫畫的形式表現(xiàn)出來。3重點難點重點:了解繪畫故事的表現(xiàn)特點,感受真、善、美。繪畫自編故事的創(chuàng)作特點及步驟。難點:選材、構(gòu)思設(shè)計、構(gòu)圖與繪制。

一、導(dǎo)入:1、請一位同學(xué)和老師一起做游戲:老師有紅、黃、藍三種顏色,兩人各滴一種顏色在畫紙上,再用吸管吹,讓顏料混合、互相滲透。讓全班同學(xué)觀察兩種顏色互相滲透的變化過程,并且把看到的變化分別在小組里說一說。2、請兩位同學(xué)上臺,再做一次游戲,把看到的變化經(jīng)小組討論后,在班上說一說。3、教師小結(jié):兩種流動的顏色在互相混合、滲透的過程中變幻無窮,今天,我們一起動手試試,看看這種美妙的變化。4、揭示課題:流動的顏色

3重點難點教學(xué)重點:認識、掌握中國畫工具材料的使用。用筆、用墨、用水的訓(xùn)練。教學(xué)難點:焦、濃、重、淡、清的正確畫法,嘗試用此技法畫一個水墨小品。教學(xué)活動活動1【導(dǎo)入】一、師生問候,引入新課。1、檢查學(xué)生用具準備情況,提醒大家管理好自己的水和墨汁,別污染自己或他人衣服。2、提問引入:你自己最喜歡用什么畫筆作畫?引入水墨畫概念。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。