
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.

證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對(duì)等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個(gè)分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解.【類型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個(gè)分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個(gè)單項(xiàng)式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

有三種購買方案:購A型0臺(tái),B型10臺(tái);A型1臺(tái),B型9臺(tái);A型2臺(tái),B型8臺(tái);(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時(shí),購買資金為12×1+10×9=102(萬元);當(dāng)x=2時(shí),購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺(tái),B型9臺(tái).方法總結(jié):此題將現(xiàn)實(shí)生活中的事件與數(shù)學(xué)思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時(shí),應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計(jì)應(yīng)用一元一次不等式解決實(shí)際問題的步驟:實(shí)際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實(shí)際問題確定答案本節(jié)課通過實(shí)例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過程中,可通過類比列一元一次方程解決實(shí)際問題的方法來學(xué)習(xí),讓學(xué)生認(rèn)識(shí)到列方程與列不等式的區(qū)別與聯(lián)系.

∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.

解析:(1)先把第二個(gè)分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個(gè)分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時(shí),可以把其中一個(gè)分母放到帶有負(fù)號(hào)的括號(hào)內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進(jìn)行運(yùn)算.三、板書設(shè)計(jì)1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號(hào)法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分?jǐn)?shù)的加減法類比得出同分母分式的加減法.易錯(cuò)點(diǎn)一是符號(hào),二是結(jié)果的化簡.在教學(xué)中,讓學(xué)生參與課堂探究,進(jìn)行自主歸納,并對(duì)易錯(cuò)點(diǎn)加強(qiáng)練習(xí).從而讓學(xué)生對(duì)知識(shí)的理解從感性認(rèn)識(shí)上升到理性認(rèn)識(shí).

方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號(hào);(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時(shí)有所不同.如果這個(gè)系數(shù)是正數(shù),不等號(hào)的方向不變;如果這個(gè)系數(shù)是負(fù)數(shù),不等號(hào)的方向改變.這也是這節(jié)課學(xué)生容易出錯(cuò)的地方.教學(xué)時(shí)要大膽放手,不要怕學(xué)生出錯(cuò),通過學(xué)生犯的錯(cuò)誤引起學(xué)生注意,理解產(chǎn)生錯(cuò)誤的原因,以便在以后的學(xué)習(xí)中避免出錯(cuò).

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

1、復(fù)習(xí)萬以內(nèi)數(shù)的認(rèn)識(shí)。 請(qǐng)同學(xué)們先來回憶一下,我們學(xué)了萬以內(nèi)數(shù)的哪些知識(shí)? 回憶學(xué)了萬以內(nèi)數(shù)的數(shù)數(shù)、讀數(shù)、寫數(shù)、數(shù)的組成、數(shù)位的含義、數(shù)的順序和大小比較、近似數(shù)以及整百、整千數(shù)的加減法……2、下面先請(qǐng)大家獨(dú)立做教材第3題,然后集體訂正。 指名讓學(xué)生說一說是怎么做的?3、寫一寫,再讀一讀。① 千位上是2個(gè)千、百位上是5個(gè)百、個(gè)位上是6個(gè)一。② 二千五百零六。4、 下面復(fù)習(xí)用計(jì)數(shù)單位表示數(shù),獨(dú)立完成書上第4題,想一想是怎樣做出來的。5、 復(fù)習(xí)近似數(shù)。請(qǐng)同學(xué)們看教材第5題,找出這段文字中哪些數(shù)是近似數(shù)?并畫出來。再請(qǐng)同學(xué)回答。

解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過解決實(shí)際問題,體會(huì)數(shù)學(xué)與社會(huì)生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.

探究點(diǎn)三:函數(shù)的圖象洗衣機(jī)在洗滌衣服時(shí),每漿洗一遍都經(jīng)歷了注水、清洗、排水三個(gè)連續(xù)過程(工作前洗衣機(jī)內(nèi)無水).在這三個(gè)過程中,洗衣機(jī)內(nèi)的水量y(升)與漿洗一遍的時(shí)間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機(jī)工作前洗衣機(jī)內(nèi)無水,∴A,B兩選項(xiàng)不正確,淘汰;又∵洗衣機(jī)最后排完水,∴D選項(xiàng)不正確,淘汰,所以選項(xiàng)C正確,故選C.方法總結(jié):本題考查了對(duì)函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個(gè)變量的變化情況.三、板書設(shè)計(jì)函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過程中,注意通過對(duì)以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動(dòng)有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動(dòng).在活動(dòng)中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識(shí)別等加深學(xué)生對(duì)函數(shù)概念的理解.

本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動(dòng)開啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.(三)強(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.

解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個(gè)3之間1的個(gè)數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個(gè)有理數(shù)都可以化為分?jǐn)?shù)形式,而無理數(shù)則不能.探究點(diǎn)二:借助計(jì)算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計(jì)x的整數(shù)部分,看它在哪兩個(gè)連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個(gè)連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.

第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實(shí)際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.

在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語言表達(dá)他們的想法,在估算的過程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對(duì)“畫能掛上去嗎”這個(gè)問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動(dòng)學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.

② 命題的含義:判斷一件事情的句子,叫做命題,如果一個(gè)句子沒有對(duì)某一件事情作出任何判斷,那么它就不是命題.活動(dòng)目的:通過課后的總結(jié),使學(xué)生對(duì)定義、命題等概念有更清楚的認(rèn)識(shí),讓學(xué)生在頭腦中對(duì)本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對(duì)定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對(duì)命題的學(xué)習(xí)有了清楚的認(rèn)識(shí)。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級(jí)數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對(duì)數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無味的。并能從表演中不同的人對(duì)“黑客”這個(gè)名詞的不同理解更好地悟出“定義”的含義。

第一環(huán)節(jié):回顧引入活動(dòng)內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動(dòng)目的:回顧上節(jié)知識(shí),為本節(jié)課的展開打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問個(gè)別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動(dòng)內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等.(2)如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等.(3)如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形.(4)如果一個(gè)四邊的對(duì)角線相等,那么這個(gè)四邊形是矩形.(5)如果一個(gè)四邊形的兩條對(duì)角線互相垂直,那么這個(gè)四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項(xiàng),“那么……”是由已知事項(xiàng)推斷出的結(jié)論.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。