提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

統(tǒng)編版三年級語文上第12課總也倒不了的老屋教學(xué)設(shè)計教案

  • 小學(xué)數(shù)學(xué)人教版三年級上冊《分?jǐn)?shù)的簡單應(yīng)用》說課稿

    小學(xué)數(shù)學(xué)人教版三年級上冊《分?jǐn)?shù)的簡單應(yīng)用》說課稿

    一、說教材《分?jǐn)?shù)的簡單應(yīng)用》是人教版小學(xué)數(shù)學(xué)三年級上冊第八單元的知識。教材安排主要是先讓學(xué)生理解一個物體或者幾個物體都可以當(dāng)成一個整體進(jìn)行平均分,會把一個整體平均分為幾部分,選擇其中的幾部分。根據(jù)學(xué)生的生活經(jīng)驗和知識背景及課本的知識特點,本節(jié)課的教學(xué)目標(biāo)定為:1、知識與技能:經(jīng)歷解決問題的過程,能根據(jù)分?jǐn)?shù)的含義,利用整數(shù)乘、除法來解決問題。2、過程與方法:通過分一分、拿一拿,理解情境中的數(shù)量關(guān)系,探求解決求一個數(shù)的幾分之幾的方法.3、情感態(tài)度與價值觀:感悟數(shù)形結(jié)合的思想,初步了解分?jǐn)?shù)的在實際生活中的應(yīng)用和價值。本課教學(xué)的重點是:引導(dǎo)學(xué)生根據(jù)分?jǐn)?shù)含義分析數(shù)量關(guān)系,并用整數(shù)乘除法來解決問題。

  • 小學(xué)數(shù)學(xué)人教版三年級上冊《分?jǐn)?shù)的初步認(rèn)識》說課稿

    小學(xué)數(shù)學(xué)人教版三年級上冊《分?jǐn)?shù)的初步認(rèn)識》說課稿

    一、說教材本課內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書三年級上冊90頁到91頁內(nèi)容。這部分內(nèi)容是學(xué)生在掌握了萬以內(nèi)整數(shù)知識的基礎(chǔ)上進(jìn)行教學(xué)的。從整數(shù)到分?jǐn)?shù)是數(shù)的概念的一次擴(kuò)展,又是學(xué)生認(rèn)識數(shù)的概念的一次質(zhì)的飛躍。無論是意義,還是讀寫方法、計算方法,分?jǐn)?shù)和整數(shù)都有很大的差異。因此,教材將分?jǐn)?shù)的知識分段教學(xué)。本學(xué)段是分?jǐn)?shù)的初步認(rèn)識,這節(jié)課是認(rèn)識幾分之一。認(rèn)識幾分之一是本單元教學(xué)內(nèi)容的核心。二、說學(xué)情分析在此之前,學(xué)生在生活中可能接觸過二分之一這樣的分?jǐn)?shù),但并不理解它的含義。分?jǐn)?shù)的產(chǎn)生是從平均分某個不可分的單位開始的,學(xué)生生活中已經(jīng)有這樣的經(jīng)驗。例如,媽媽把一個月餅平均分成兩份給弟弟和妹妹,每人分得半個月餅。但學(xué)生不會用分?jǐn)?shù)來表述。所以,教學(xué)中我特別注意從學(xué)生已有的生活經(jīng)驗出發(fā),在豐富的操作活動中主動去獲取分?jǐn)?shù)的相關(guān)知識。

  • 中班藝術(shù):我來設(shè)計課件教案

    中班藝術(shù):我來設(shè)計課件教案

    活動目標(biāo):1、在對自己的家進(jìn)行觀察后,能大膽地表達(dá)出自己的見解。2、充分發(fā)揮幼兒的想象,設(shè)計自己心中的家庭用具?;顒訙?zhǔn)備:1、課前對自己家進(jìn)行觀察。2、積木若干;繪畫材料。3、多媒體課件?;顒舆^程:一、課件出示,直導(dǎo)課題?! ∏皫滋欤覀冋f起了家,都說自己家里的東西好,那請你們來講講看,你們家的什么東西好,好在什么地方?(鼓勵幼兒發(fā)表見解)二、啟發(fā)討論?! 〗裉炖蠋熃o你們帶來了一個“家”,你們來看看,這個家怎么樣?(引導(dǎo)幼兒討論`如何為這個家設(shè)計家庭用具)

  • 美術(shù)活動:設(shè)計郵票課件教案

    美術(shù)活動:設(shè)計郵票課件教案

    2.增進(jìn)幼兒裝飾美和色彩美的感受和經(jīng)驗。 活動準(zhǔn)備:1.剪好花邊的鉛畫紙2.記號筆、油畫棒。(人手一份)   3.集郵冊3本?;顒又攸c: 幼兒學(xué)會用鮮明、柔和的色彩裝飾郵票。活動流程:欣賞郵票--師生討論--幼兒作畫--評價活動

  • 美術(shù)活動:設(shè)計郵票課件教案

    美術(shù)活動:設(shè)計郵票課件教案

    2.增進(jìn)幼兒裝飾美和色彩美的感受和經(jīng)驗。 活動準(zhǔn)備:1.剪好花邊的鉛畫紙2.記號筆、油畫棒。(人手一份)   3.集郵冊3本。活動重點: 幼兒學(xué)會用鮮明、柔和的色彩裝飾郵票?;顒恿鞒蹋盒蕾p郵票--師生討論--幼兒作畫--評價活動

  • 體育活動設(shè)計《熊來啦》課件教案

    體育活動設(shè)計《熊來啦》課件教案

    我設(shè)計的這個活動是受到一個經(jīng)典的體育游戲的啟發(fā)對其加以修改而成。游戲的名字叫《熊和小孩》,為了提高幼兒的興趣,我為游戲編了一首簡短的兒歌《熊來啦》,將規(guī)則反映在了兒歌中,幫助幼兒掌握游戲規(guī)則。同時我發(fā)現(xiàn)大班幼兒的求知欲很強(qiáng),所以這個游戲中也插入熊的習(xí)性方面的內(nèi)容。另外,其實很多幼兒早就會玩《木頭人》的游戲,這兩個游戲的玩法很相似,然而游戲換一首兒歌體現(xiàn),會帶給幼兒新鮮感。我設(shè)計了讓幼兒自己商定游戲規(guī)則的環(huán)節(jié),這樣幼兒在活動中能主動學(xué)習(xí),并且按自己的想法玩游戲,能提高幼兒的積極性,并體驗成功感。活動名稱:體育游戲《熊來啦》活動目標(biāo):1、幼兒喜歡參與游戲,情緒積極愉快。2、幼兒通過游戲培養(yǎng)抑制自己行為的能力,訓(xùn)練反應(yīng)的靈敏性。 3、幼兒能按游戲規(guī)則進(jìn)行游戲?;顒訙?zhǔn)備:“熊”頭飾一只,圈劃幼兒活動范圍和“熊家”活動過程:1、導(dǎo)入活動。 教師:“如果你突然遇到一頭大狗熊,你該怎么樣,它才不會吃你?”幼兒討論提出意見。

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.2《直線的方程》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.2《直線的方程》教學(xué)設(shè)計

    課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標(biāo)群體14級五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標(biāo): 正確分析問題的能力 制造業(yè)通用能力目標(biāo): 正確分析問題的能力學(xué)習(xí)重點直線的斜率公式的應(yīng)用.學(xué)習(xí)難點直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問教學(xué)媒體黑板、粉筆

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點用適當(dāng)?shù)姆柋硎军c、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學(xué)難點從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(1)教學(xué)設(shè)計

    高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時,所需進(jìn)化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數(shù)學(xué)選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計

    由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗線性相關(guān)顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢的異同.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (2) 教學(xué)設(shè)計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (1) 教學(xué)設(shè)計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(1)教學(xué)設(shè)計

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (2) 教學(xué)設(shè)計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的方差教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的方差教學(xué)設(shè)計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機(jī)變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計

    對于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機(jī)變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(2)教學(xué)設(shè)計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。

上一頁123...141516171819202122232425下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。