提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中政治必修4創(chuàng)新是民族進(jìn)步的靈魂精品教案

  • 人教版新課標(biāo)高中物理必修2重力勢(shì)能說(shuō)課稿2篇

    人教版新課標(biāo)高中物理必修2重力勢(shì)能說(shuō)課稿2篇

    (四)、彈性勢(shì)能(據(jù)課時(shí)情況,可以讓學(xué)生自學(xué))生活中還有一些物體既沒(méi)有運(yùn)動(dòng)也沒(méi)有很大的高度卻同樣“儲(chǔ)存”著能量,哪怕它只是孩童手里的玩具(圖片:彈弓)。張緊的弓一撒手就會(huì)對(duì)箭支做功改變它的動(dòng)能,松弛的弓有這樣的本領(lǐng)嗎?同樣是弓前者具有能量而后者沒(méi)有,那么什么情況下物體才具有這種能量呢?張緊的弓在恢復(fù)原狀的過(guò)程會(huì)對(duì)外做功,但是拉斷的弓還能有做功的本領(lǐng)嗎?1.定義:物體由于發(fā)生彈性形變而具有的能量叫做彈性勢(shì)能。2.彈性勢(shì)能的大小與哪些因素有關(guān)呢?3、勢(shì)能由相互作用的物體的相對(duì)位置決定的能量。重力勢(shì)能:由地球和物體間相對(duì)位置決定。彈性勢(shì)能:由發(fā)生形變的各部分的相對(duì)位置決定。(五).反饋練習(xí)1. 物體在運(yùn)動(dòng)過(guò)程中,克服重力做功50J, 則( )A.重力做功為50JB.物體的重力勢(shì)能一定增加50JC.物體的重力勢(shì)能一定減少50JD.重力做功為-50J

  • 人教版高中語(yǔ)文必修1《奧斯維辛沒(méi)有什么新聞》說(shuō)課稿2篇

    人教版高中語(yǔ)文必修1《奧斯維辛沒(méi)有什么新聞》說(shuō)課稿2篇

    第11段很短,只點(diǎn)出了這是“在婦女身上搞不育試驗(yàn)的地方”,但在最末又加了一句“否則他會(huì)羞紅了臉的”,這是為什么?那肯定是一個(gè)極為骯臟,極為殘酷的地方。據(jù)資料記載:當(dāng)時(shí)的希特勒制定一項(xiàng)令所有被征服或占領(lǐng)國(guó)家的民族充當(dāng)奴隸并且逐漸消亡的隱密性種族滅絕計(jì)劃——高效率、大規(guī)模的強(qiáng)制絕育。為此,數(shù)以百計(jì)的納粹醫(yī)生、教授、專家甚至護(hù)士,在行政管理專家的通力合作下,相繼提出了幾十種絕育方法,十余種實(shí)施方案,并且在奧斯維辛、拉芬斯布呂克、布亨瓦爾特、達(dá)豪等十多個(gè)大型集中營(yíng)內(nèi)對(duì)數(shù)以萬(wàn)計(jì)的猶太、吉普賽囚犯、因從事抵抗運(yùn)動(dòng)而被捕的政治犯和男女戰(zhàn)俘進(jìn)行了殘酷的手術(shù)試驗(yàn),造成他們大量死亡或者終身殘疾、終身不育。這樣殘酷的毫無(wú)人性的手段,任誰(shuí)也不愿看到。

  • 人教版新課標(biāo)高中物理必修1牛頓第三定律說(shuō)課稿2篇

    人教版新課標(biāo)高中物理必修1牛頓第三定律說(shuō)課稿2篇

    問(wèn):為什么會(huì)出現(xiàn)這樣的情況,男女生之間的拉力存在著怎樣的大小關(guān)系?進(jìn)一步求證這兩個(gè)力的大小關(guān)系經(jīng)過(guò)共同討論,得方案:把兩個(gè)彈簧秤勾在一起,重現(xiàn)拔河比賽,分三種情況進(jìn)行。(通過(guò)攝像頭把彈簧秤的讀數(shù)放大)兩彈簧稱勾在一起拉,處于靜止不動(dòng)時(shí)(即拔河比賽,雙方處于僵持狀態(tài))兩彈簧稱勾在一起拉,并向一方運(yùn)動(dòng)(即比賽繩子被拉向一方時(shí)的狀態(tài))3、兩彈簧稱勾在一起拉,一方方向慢慢改變(兩力方向始終在一條直線上)實(shí)驗(yàn)結(jié)論:兩彈簧稱的讀數(shù)的變化總是相同的,大小相等,方向相反。得到牛頓第三定律:追問(wèn):既然兩個(gè)力大小相等,那么拔河比賽為什么還存在勝負(fù)之分?講清作用力與反作用力作用的受力物體不同,并和學(xué)生討論如何做才會(huì)獲勝?;貞?yīng)課前問(wèn)題:“以卵擊石”為什么雞蛋碎?

  • 人教版新課標(biāo)高中物理必修1彈性形變和彈力說(shuō)課稿

    人教版新課標(biāo)高中物理必修1彈性形變和彈力說(shuō)課稿

    在同一個(gè)直角坐標(biāo),做出兩個(gè)不同彈簧的F—X圖象,然后進(jìn)行比較。圖象法處理數(shù)據(jù)更為直觀,更容易得出物理變化規(guī)律,且該種方法處理數(shù)據(jù)能更好地減小實(shí)驗(yàn)的偶然誤差。最后老師歸納總結(jié):得出胡克定律:F=KX(K為彈簧的頸度系數(shù))[設(shè)計(jì)意圖:在探究彈力的大小與形變的定量關(guān)系時(shí),由學(xué)生進(jìn)行猜想、實(shí)驗(yàn)和得出規(guī)律,并利用信息技術(shù)計(jì)算機(jī)繪制F—X圖象,充分利用信息技術(shù)資源和物理學(xué)科的整合。能較好地體現(xiàn)以學(xué)生為主的新的教學(xué)理念。對(duì)探究實(shí)驗(yàn)過(guò)程教師加以指導(dǎo),使學(xué)生學(xué)會(huì)團(tuán)結(jié)合作、學(xué)會(huì)探究物理規(guī)律;再加上熟練信息技術(shù),更有效地提高學(xué)習(xí)效率。](五)彈力的應(yīng)用(圖片,視頻播放:射箭)[設(shè)計(jì)意圖:讓學(xué)生知道產(chǎn)品設(shè)計(jì)離不開(kāi)物理理論,做到從實(shí)踐到理論,再?gòu)睦碚摰綄?shí)踐的學(xué)習(xí)過(guò)程。](六)開(kāi)放式問(wèn)題(視頻播放:撐桿跳高、跳水);提出問(wèn)題:通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),請(qǐng)同學(xué)們開(kāi)放式地討論①?gòu)男巫兣c彈力知識(shí)去思考,撐桿跳高運(yùn)動(dòng)員跳得這么高的主要原因是什么?②跳水運(yùn)動(dòng)員在空中滯空時(shí)間主要由哪方面決定?

  • 學(xué)生個(gè)人兩紅兩優(yōu)表彰大會(huì)心得精品例文

    學(xué)生個(gè)人兩紅兩優(yōu)表彰大會(huì)心得精品例文

    隨著自己的不斷長(zhǎng)大,發(fā)現(xiàn)我們身上的責(zé)任也越來(lái)越大,因?yàn)槲覀兪切聲r(shí)代的青年,我們要做好自己的責(zé)任,要努力學(xué)習(xí)。都說(shuō)我們是垮掉的一代,實(shí)際上并不是,我們是抗疫的主力軍,沖在最前面為國(guó)家人民保駕護(hù)航!  共青團(tuán)建團(tuán)百年作為新時(shí)代的的青年,我們要樹(shù)立愛(ài)國(guó)主義精神,國(guó)家的前途,民族的命運(yùn),人民的幸福,是當(dāng)代中國(guó)青年必須和必將承擔(dān)的重任?! ∫员阋院鬄閲?guó)家和人民獻(xiàn)上自己的一份力,在不遠(yuǎn)的將來(lái)我們國(guó)家會(huì)越來(lái)越好,中華民族屹立于世界民族之林,實(shí)現(xiàn)中華民族偉大復(fù)興。

  • 護(hù)士節(jié)護(hù)士長(zhǎng)精品發(fā)言稿

    護(hù)士節(jié)護(hù)士長(zhǎng)精品發(fā)言稿

    這也就是我在護(hù)理崗位上不斷提高,取得一點(diǎn)成績(jī)的動(dòng)力源泉。付出就會(huì)有回報(bào),由于平時(shí)不懈的努力,在20_年度由甘肅省總工會(huì)、共青團(tuán)甘肅省委、甘肅省人事廳、甘肅省衛(wèi)生廳聯(lián)合舉辦的甘肅省青年崗位技能大賽中奪取了甘肅省青年崗位能手護(hù)理技能比賽第一名的佳績(jī),并榮膺了“甘肅省杰出青年崗位能手”殊榮;同時(shí),被省衛(wèi)生廳推薦為全國(guó)衛(wèi)生系統(tǒng)護(hù)理專業(yè)“巾幗建功”標(biāo)兵和“全國(guó)青年崗位能手”。當(dāng)然,這些成績(jī)的取得,除了我個(gè)人的努力之外,離不開(kāi)我院院領(lǐng)導(dǎo)的支持和鼓勵(lì),離不開(kāi)同事們的關(guān)心和幫忙,借此機(jī)會(huì),向他們表示最衷心的感激!

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹(shù)立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過(guò)實(shí)際問(wèn)題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過(guò)具體問(wèn)題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(2)

    學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見(jiàn)超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會(huì)判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對(duì)角的定義是:射線OA繞端點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)一周回到起始位置,在這個(gè)過(guò)程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見(jiàn)超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.

  • 高中語(yǔ)文人教版必修二《歸園田居》說(shuō)課稿

    高中語(yǔ)文人教版必修二《歸園田居》說(shuō)課稿

    一、說(shuō)教材本節(jié)課選自于人教版語(yǔ)文必修二第二單元詩(shī)三首中的一首詩(shī)歌,它是陶淵明歸隱后的作品。寫(xiě)的是田園之樂(lè),實(shí)際表明的是作者不愿與世俗同流合污的心聲,甘愿守著自己的拙志回歸田園。學(xué)習(xí)該詩(shī),有助于學(xué)生了解山水田園詩(shī)的特點(diǎn),感受者作者不同流俗的高尚情操,同時(shí)可以培養(yǎng)學(xué)生初步的鑒賞古典詩(shī)歌的能力。

  • 高中語(yǔ)文人教版必修三《動(dòng)物游戲之謎》說(shuō)課稿

    高中語(yǔ)文人教版必修三《動(dòng)物游戲之謎》說(shuō)課稿

    科學(xué)是人類認(rèn)識(shí)世界的重要工具,閱讀科普說(shuō)明文不僅可以啟迪心智,了解更多知識(shí)。而且更夠激發(fā)學(xué)生對(duì)科學(xué)的興趣。學(xué)習(xí)這些文章要注重學(xué)生科學(xué)精神的培養(yǎng),關(guān)注科學(xué)探索的過(guò)程,感受科學(xué)家在科學(xué)探索中表現(xiàn)的人格魅力。我們知道一些科學(xué)家就是因?yàn)殚喿x了相關(guān)的科普文章才對(duì)某一學(xué)科產(chǎn)生興趣,從而走上成功之路的。我們?cè)谥v解的時(shí)候可以跟學(xué)生列舉一些例子,讓學(xué)生認(rèn)識(shí)到一篇好的科普文章的重大意義。

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

上一頁(yè)123...44454647484950
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。