
方法總結(jié):由絕對值的定義可知,一個數(shù)的絕對值越小,離原點越近.將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標準質(zhì)量的差的絕對值越小,越接近標準質(zhì)量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數(shù)的絕對值總是大于或等于0,即為非負數(shù),若兩個非負數(shù)的和為0,則這兩個數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個非負數(shù)的和為0,則這幾個數(shù)都為0.三、板書設(shè)計絕對值相反數(shù)絕對值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個數(shù)的絕對值相等兩個負數(shù)比較大?。航^對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數(shù)學(xué)術(shù)語,是本章的重點內(nèi)容,同時也是一個難點內(nèi)容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點的位置出發(fā),得出定義的.

方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內(nèi)的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調(diào)整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號法則和熟練運用合并同類項的法則.

2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應(yīng)該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學(xué)試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計

(2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.

在探究估算方法的時候,教師要注重適時的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會估算的實用價值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評價的一些思考在教學(xué)中要多鼓勵學(xué)生用自己的語言表達他們的想法,在估算的過程中多給予適當?shù)囊龑?dǎo)和評價,讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵探究方式、表達方式和解題方法的多樣化.

億以內(nèi)數(shù)的認識,是在學(xué)生認識和掌握萬以內(nèi)數(shù)的基礎(chǔ)上學(xué)習(xí)的。生活中大數(shù)廣泛存在,對大數(shù)的認識是萬以內(nèi)數(shù)的認識的拓展,也是學(xué)生必須掌握的最基本的數(shù)學(xué)基礎(chǔ)之一。本冊教材先教學(xué)億以內(nèi)數(shù)的讀法和寫法,再教學(xué)億以上數(shù)的讀法和寫法,并對數(shù)的理論進行整理,在兩部分認識數(shù)教學(xué)中間安排十進制計數(shù)法,知道數(shù)位,數(shù)級,對億以內(nèi)數(shù)的認識的內(nèi)容進行歸納整理,也對億以上數(shù)的認識起承上啟下作用。加強了數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,同時對學(xué)生進行綜合知識的滲透,從萬以內(nèi)數(shù)的認識到億以內(nèi)數(shù)的認識是學(xué)生數(shù)概念的又一次擴充。教材提供了較豐富的素材,讓學(xué)生感受大數(shù),不僅為學(xué)生認識大數(shù)提供豐富的內(nèi)容,也為對學(xué)生進行國情教育提供了好素材。突出數(shù)概念教學(xué),從數(shù)學(xué)的高度把握十進制原理,培養(yǎng)數(shù)感。教學(xué)內(nèi)容的呈現(xiàn)給了學(xué)生自主探索和自主交流的空間,也為教師組織教學(xué)提供了思路,如:讀、寫數(shù)的法則教材上不給出現(xiàn)成的結(jié)論,而是讓學(xué)生通探究自主過討論得到。

《比的化簡》是北師大版六年級上冊第52——53頁的教學(xué)內(nèi)容,主要學(xué)習(xí)化簡比的方法。教材聯(lián)系學(xué)生的生活創(chuàng)設(shè)問題情境,讓學(xué)生在解決問題的過程中加深對比的意義的理解,進一步感受比、除法、分數(shù)的關(guān)系,體會化簡比的必要性,學(xué)會化簡比的方法。在這之前,學(xué)生早已學(xué)過“商不變的性質(zhì)”和“分數(shù)的基本性質(zhì)”,最近又認識了比,初步理解了比的意義,以及比與除法、分數(shù)的關(guān)系,大部分學(xué)生能較為熟練地求比值。比較而言,實際上化簡比與求比值的方法有相通之處,那么借助知識的遷移能幫助學(xué)生順利理解掌握新知識。二、說教學(xué)目標:知識與能力:會運用商不變的性質(zhì)或分數(shù)的基本性質(zhì)化簡比。過程與方法:在實際情境中,讓學(xué)生體會化簡比的必要性,在觀察、比較中理解什么是化簡比,,并能解決一些簡單的實際問題。情感、態(tài)度與價值觀:促進知識遷移,培養(yǎng)學(xué)生的概括能力。體驗知識的相通性以及數(shù)學(xué)與生活的聯(lián)系。

接下來引導(dǎo)學(xué)生分析題中數(shù)量關(guān)系:題目要分配什么?按照什么分配?重點思考討論:從3:2這個比中,你能知道什么?接下來鼓勵小組合作嘗試多種方法解答,重點理解按比分配的方法。2、小結(jié):按比分配的應(yīng)用題有什么結(jié)構(gòu)特點?怎樣解答這樣的應(yīng)用題?這樣設(shè)計為學(xué)生提供自主探索的空間。所以在教學(xué)中可以靈活地依據(jù)提出的方法調(diào)換教學(xué)順序,并引導(dǎo)學(xué)生掌握兩種不同的解題方法。安排學(xué)生的小組討論方式能使學(xué)生一開始就暢所欲言,把幾種不同思路比較和聯(lián)系起來,在理解的基礎(chǔ)上才能更好的掌握方法,并注意培養(yǎng)學(xué)生的檢驗?zāi)芰?。第三個環(huán)節(jié):多層訓(xùn)練,形成技能。練習(xí)是數(shù)學(xué)課堂教學(xué)一個重要環(huán)節(jié),我設(shè)計的練習(xí)題力求做到從易到難,由淺入深,有層次,有坡度,新舊知識融合恰當,形成技能技巧,開拓思維,發(fā)展能力,達到練習(xí)的預(yù)期目的。

一、說教材小數(shù)的初步認識是在學(xué)生熟練地掌握了分數(shù)的基礎(chǔ)上進行學(xué)習(xí)的內(nèi)容。本課內(nèi)容包括認識一位小數(shù)、兩位小數(shù)和它的讀、寫法。認識一位小數(shù)和兩位小數(shù)是小數(shù)的初步認識中最基礎(chǔ)的知識,學(xué)習(xí)小數(shù)不僅為學(xué)生準確清晰地理解小數(shù)的含義,也為今后系統(tǒng)地學(xué)習(xí)小數(shù)的知識打下基礎(chǔ)。同時,小數(shù)的知識在實際生活中應(yīng)用較廣泛,有利于學(xué)生運用所學(xué)知識技能來解決一些實際的問題。學(xué)情分析:小學(xué)三年級的學(xué)生對小數(shù)并不是全然不知,在日常生活中已經(jīng)有所接觸,但由于小數(shù)是分數(shù)的另一種表現(xiàn)形式,其意義具有一定程度的抽象性,學(xué)生要深刻理解小數(shù)的意義,還有一定的困難,針對這一現(xiàn)狀,教學(xué)中應(yīng)充分考慮學(xué)生的生活經(jīng)驗,利用生活與數(shù)學(xué)知識的契合點,重視直觀、引導(dǎo)、注重啟發(fā),利用小數(shù)與分數(shù)之間的聯(lián)系,讓學(xué)生親歷小數(shù)的形成過程。

第三個圖采用教師適當提醒,由學(xué)生自己收集背景材料中的數(shù)學(xué)信息,自己根據(jù)信息提出問題,解決問題,有利于培養(yǎng)學(xué)生問題解決能力。)(4)出示整幅圖,綜合感知,提出問題在學(xué)生解決了三個游戲中的數(shù)學(xué)問題,進一步感知解決一個數(shù)學(xué)問題所必須具備的條件后,通過媒體顯示相關(guān)數(shù)學(xué)信息,再引導(dǎo)學(xué)生觀察整個畫面,選擇有用信息,提出不同的問題。這樣安排有利于學(xué)生更加明確應(yīng)用題的結(jié)構(gòu)特征,掌握如何根據(jù)特定的情景,提出問題,解決數(shù)學(xué)問題;有利于培養(yǎng)學(xué)生的問題意識和創(chuàng)新思維;有利于提高學(xué)生用數(shù)學(xué)眼光觀察周圍事物的能力和問題解決的能力。三、鞏固反饋,深化新知1. 書上“做一做”。(結(jié)合小學(xué)生追求快樂的天性,好勝的心理,我設(shè)計幫小動物解決問題的故事情境,吸引學(xué)生的學(xué)習(xí)興趣,營造出充滿生氣和激情的學(xué)習(xí)氛圍,并運用獎勵措施,滿足孩子們成功的喜悅心理需求)

方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設(shè)計一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵學(xué)生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W(xué)精神.

3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.

解:設(shè)正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設(shè)表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當數(shù)量是2.5千克時的售價.

方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進,逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.

解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.

學(xué)習(xí)目標1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;

四個不同類型的問題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識及數(shù)學(xué)方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進一步鞏固當天所學(xué)知識。教師也可根據(jù)學(xué)生情況適當增減,但難度不應(yīng)過大.

3.說教學(xué)重、難點依據(jù)數(shù)學(xué)課程標準,及對教材的認識,我確定了本節(jié)課的重點和難點。教學(xué)重點:掌握長方體和正方體的特征。教學(xué)難點:建立“立體圖形”的空間概念,了解長方體、正方體的關(guān)系。二、說教法根據(jù)幾何知識的教學(xué)特點、本節(jié)教學(xué)內(nèi)容以及小學(xué)生空間觀念薄弱的特點,我將采用以下教學(xué)方法。直觀演示法:利用圖片等手段進行直觀演示,激發(fā)學(xué)生的學(xué)習(xí)興趣;觀察發(fā)現(xiàn)法:通過讓學(xué)生觀察長方體、正方體的一些實物發(fā)現(xiàn)新知,培養(yǎng)學(xué)生的觀察概括能力;合作探究法:引導(dǎo)學(xué)生通過自主研究、合作討論等活動形式來獲取知識。同時運用多媒體輔助教學(xué),使學(xué)生的觀察能力、抽象概括能力逐步提高。三、說學(xué)法為了使學(xué)生較好地掌握長方體和正方體的特征,并逐步形成空間觀念,除了讓學(xué)生通過觀察來認識長方體和正方體的特征以外,在觀察實物的基礎(chǔ)上,通過動手操作,看一看,摸一摸,數(shù)一數(shù),量一量,做一做來學(xué)習(xí)新知,同時以此來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的積極性。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。