
6.新冠肺炎疫情發(fā)生以來,中央強調(diào),在疫情防控工作中,要堅決反對形式主義、 官僚主義, 讓基層干部把更多精力投入到疫情防控第一線。這樣要求 ( )①有利于政府工作人員依法行政②有利于政府履行職責(zé),維護(hù)廣大人民群眾的根本利益③有利于形成良好的社會風(fēng)氣④警示人類必須堅持走可持續(xù)發(fā)展的道路A. ①②③ B. ①②④ C. ①③④ D. ②③④ 7.中央紀(jì)委監(jiān)察部網(wǎng)站(現(xiàn)中央紀(jì)委國家監(jiān)委網(wǎng)站)開通糾正“四風(fēng)”(形式主義、 官僚主義、 享樂主義和奢靡之風(fēng)) 監(jiān)督舉報直通車,引導(dǎo)網(wǎng)友積極舉報各種公款 吃喝、公款旅游等“四風(fēng)”問題。這一做法 ( )①擴大了我國公民的政治經(jīng)濟(jì)權(quán)利②有利于政府依法行政,實現(xiàn)國家長治久安③有利于提高我國公民的民主監(jiān)督意識④有利于國家機關(guān)及其工作人員勤政廉潔A. ①②③ B. ①②④ C. ①③④ D. ②③④ 8.《孟子 ·離婁上》有言:“徒善不足以為政, 徒法不能以自行。”

本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進(jìn)一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認(rèn)識函數(shù)零點的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;

本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。

本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。

1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認(rèn)識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認(rèn)識;b.邏輯推理:由特殊到一般的推理;

本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進(jìn)一步加深對函數(shù)概念的理解。課本從引進(jìn)函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認(rèn)識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒āD象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;

《朝天子·詠喇叭》:這篇散曲借詠喇叭,諷刺和揭露了明代宦官作威作福、魚肉百姓的罪惡行徑,表達(dá)了對宦官專橫跋扈、趾高氣揚嘴臉的強烈憎惡之情。(2)根據(jù)上面的分析,適當(dāng)運用輕重音、升降調(diào)等朗讀技巧,有感情地反復(fù)朗讀。(3)這幾首詩詞曲中,你最喜歡哪幾句?說說你喜歡的理由,而后有感情地誦讀。預(yù)設(shè) 【示例一】我喜歡“山河千古在,城郭一時非”。這兩句以祖國山河萬世永存與城郭一時淪陷進(jìn)行對比,突出詩人對收復(fù)大宋江山的信念和對元人的蔑視?!臼纠课蚁矚g“無限山河淚,誰言天地寬”。從這兩句我感受到了作者的滿腔悲憤。作者一直盼望明王朝東山再起,可時運不濟(jì),命運多舛,恢復(fù)國土、重整山河的宏愿一次次落空,令作者感到深深的失望?!臼纠课蚁矚g“贏,都變做了土;輸,都變做了土”。這兩句揭示了深刻的道理,意為國家間無論怎樣爭斗,終究會在歷史的長河中漸漸湮滅,在無盡的滄桑中被遺忘,化為沉寂的黃土。經(jīng)過前面的誦讀、品讀環(huán)節(jié),學(xué)生們對這幾首詩詞已經(jīng)有了了解,再安排學(xué)生背誦,可以使學(xué)生印象更深。

1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應(yīng)的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動”―――學(xué)生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計力求做到與學(xué)生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學(xué)生興趣高一點,自信心強一點,使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個教學(xué)過程中,滲透用聯(lián)系的觀點看待數(shù)學(xué)問題的辨證思想。

(一)觀圖激趣、設(shè)疑導(dǎo)入 1.出示課件-情境圖師:上節(jié)課我們初步學(xué)習(xí)了里程表的知識,這節(jié)課我們接著來研究里程表中的數(shù)學(xué)問題。板書課題:里程表(二)師:淘氣的叔叔是出租車司機。淘氣為了記錄叔叔每天跑的路程,淘氣在叔叔星期一早上出車時,里程表的讀數(shù)是35千米。淘氣記錄了叔叔周一至周五每天回家時的里程表讀數(shù)。(課件展示里程表)。(二)探究新知1.例1(1)師:請同學(xué)們認(rèn)真觀看淘氣記錄的叔叔的周一到周五的里程表,想一想,說一說你知道了哪些數(shù)學(xué)信息?生:我發(fā)現(xiàn)了叔叔周一行了160千米。 師:同學(xué)們他說找到數(shù)學(xué)信息對嗎?生:160千米不是星期一的行駛里程,應(yīng)該是星期一晚上里程表上的讀數(shù)。 星期二里程表上的讀數(shù)是350,。生:。。。。師:同學(xué)們找的數(shù)學(xué)信息非常多,非常全面。(2)小組討論交流:淘氣根據(jù)題意畫了一個圖,你看懂了嗎?與同伴說一說。

課題名稱4.1實數(shù)指數(shù)冪授課班級 授課時間13機電1課題序號 授課課時第 到 授課形式啟發(fā)、類比使用教具課件教學(xué)目的1.識記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分?jǐn)?shù)指數(shù)冪的定義,會進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的互化。 3.識記有理數(shù)指數(shù)冪的運算性質(zhì),會進(jìn)行簡單的有理數(shù)指數(shù)冪的運算。教學(xué)重點有理數(shù)指數(shù)冪的運算、實數(shù)指數(shù)冪的綜合運算教學(xué)難點有理數(shù)指數(shù)冪的運算、實數(shù)指數(shù)冪的綜合運算更新、補 充、刪減 內(nèi)容無課外作業(yè) 1.P 96 習(xí)題。 授課主要內(nèi)容或板書設(shè)計實數(shù)指數(shù)冪 概念 思考交流 例題 課堂小結(jié) 問題解決 練習(xí) 教學(xué)后記

【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點】 一元二次不等式的解法?!窘虒W(xué)設(shè)計】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。【課時安排】 2課時(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標(biāo)是什么?(3)當(dāng)y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集

課 程數(shù)學(xué)章節(jié)內(nèi)容 課程類型新課課時安排2課時指導(dǎo)教師 日期12月 7 日學(xué)習(xí)目標(biāo)掌握用弧度表示角度的大小學(xué)習(xí)重點掌握用弧度表示角的方法學(xué)習(xí)難點弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學(xué)內(nèi)容:任意角度的推廣、終邊相等的角的表示方法; 2、已經(jīng)學(xué)過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數(shù),負(fù)角的弧度為_____數(shù),零角的弧度為零。 3、由弧度的定義可知,當(dāng)角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉(zhuǎn)化為弧度制?如何將弧度制轉(zhuǎn)化為角度制?(結(jié)合實例講解)練習(xí)(通過練習(xí)固要點)1、練習(xí)5.2.1; 2、例3;展示(通過展示強能力)(25分鐘)(包括學(xué)生展示回顧、問題、練習(xí)、小組總結(jié)等部分)1、引導(dǎo)各小組展示學(xué)習(xí)成果,在有各小組長指定小組成員展示,結(jié)束后,該組組長須總結(jié)或指定其他成員進(jìn)行總結(jié)。 2、展示過程中,提醒同學(xué)注意老師的板書,或者請老師進(jìn)行總結(jié),或題目的講解。

學(xué)科數(shù)學(xué) 課 題 1.4 充要條件班級 人數(shù) 授課時數(shù) 2 課 型 新授課 周次 授課時間 教 學(xué) 目 的 知識目標(biāo):了解“充分條件”、“必要條件”及“充要條件” 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動,學(xué)生之間的討論分析,加強合作意識。 教學(xué)重點“充分條件”、“必要條件”及“充要條件”.教學(xué)難點符號“”,“”,“”的正確使用. 教 具 教 后 小 結(jié) 學(xué)生是否真正理解有關(guān)知識; 是否能利用知識、技能解決問題; 在知識、技能的掌握上存在哪些問題。

教學(xué)目標(biāo):知識與能力目標(biāo):1.能夠借助三角函數(shù)的定義及單位圓推導(dǎo)出三角函數(shù)的誘導(dǎo)公式 2.能夠運用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角的三角函數(shù)的化簡、求值問題情感目標(biāo):1.通過誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度 2.通過誘導(dǎo)公式探求工程中的合作學(xué)習(xí),培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神; 3. 通過誘導(dǎo)公式的運用,培養(yǎng)學(xué)生的劃歸能力,提高學(xué)生分析問題和解決問題的能力。 一導(dǎo)入:二、自學(xué)(閱讀教材第110---112頁,回答下列問題) 在直角坐標(biāo)系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關(guān)于軸的對稱點的特征: 。對于角而言:角關(guān)于軸對稱的角為_______公式二:__________ _________ _________

一個數(shù)各個位上的數(shù)字之和如果是3的倍數(shù),那么,這個數(shù)一定是3的倍數(shù)。否則,這個數(shù)就不是3的倍數(shù)。4、檢驗結(jié)論。(1)我們從100以內(nèi)的數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?(2)利用100以內(nèi)數(shù)表來驗證。(3)延伸到三位數(shù)或更大的數(shù)。如:573、753、999、1236、2244、7863……(4)學(xué)生自己寫數(shù)并驗證,然后小組交流,觀察得出的結(jié)論是否相同。在本環(huán)節(jié),我用充足的時間讓小組代表上講臺展示成果,說出各自的思考過程,對學(xué)生的回答我給予充分的肯定和表揚,引導(dǎo)學(xué)生驗證自己的發(fā)現(xiàn)是否正確,最后達(dá)成共識:一個數(shù)的各位上的數(shù)的和是3的倍數(shù),這個數(shù)就3的倍數(shù)(板書)。這樣便巧妙地突出本課的重點,突破了本課的難點。

(一)說教材《百分?jǐn)?shù)的一般應(yīng)用題》是在學(xué)生學(xué)過用分?jǐn)?shù)解決問題和百分?jǐn)?shù)的意義、百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)的互化的基礎(chǔ)上進(jìn)行教學(xué)的。主要內(nèi)容是求常見的百分率,也就是求一個數(shù)是另一個數(shù)的百分之幾的實際問題,這種問題與求一個數(shù)是另一個數(shù)的幾分之幾的問題相同。所以求常見的百分率的思路和方法與分?jǐn)?shù)解決問題大致相同。通過這部分教學(xué),既加深了學(xué)生對百分?jǐn)?shù)的認(rèn)識,又加強了知識間的聯(lián)系。這部分教材在安排上有以下一些特點:1、從學(xué)生已有的知識和生活經(jīng)驗出發(fā),幫助學(xué)生理解數(shù)學(xué)。2、設(shè)置數(shù)學(xué)活動生活情境,培養(yǎng)學(xué)生的解決問題意識和探究精神。(二)說學(xué)生對學(xué)生來說,利用已有的知識和生活經(jīng)驗,依據(jù)數(shù)量關(guān)系列式解答并不困難,但要求學(xué)生找準(zhǔn)誰和誰比,很重要。二、說教學(xué)目標(biāo)與重難點根據(jù)以上分析,我確定了本節(jié)課的教學(xué)目標(biāo)如下:1、使學(xué)生加深對百分?jǐn)?shù)的認(rèn)識,理解生活中的百分率的含義,掌握求百分率的方法。2、依據(jù)分?jǐn)?shù)與百分?jǐn)?shù)應(yīng)用題的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的遷移類推能力和數(shù)學(xué)的應(yīng)用意識3、讓學(xué)生在具體的情況中感受百分?jǐn)?shù)來源于生活實際,在應(yīng)用中體驗數(shù)學(xué)的價值。重點:解答求一個數(shù)是另一個數(shù)的百分之幾的應(yīng)用題。

教材分析:例2以學(xué)校興趣小組為題材,引出稍復(fù)雜的已知一個數(shù)的幾分之幾是多少,求這個數(shù)的實際問題。用算術(shù)方法解決這樣的實際問題,不僅需要逆向思考,還要把“比一個數(shù)多它的幾分之幾”,轉(zhuǎn)化為“是一個數(shù)的幾分之幾”,比較抽象,思維難度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要經(jīng)歷從“多幾分之幾”到“是幾分之幾”的轉(zhuǎn)化,實際上是方程的形式,算術(shù)的思路。教學(xué)重點:弄清單位“1”的量,會分析題中的數(shù)量關(guān)系。教學(xué)難點:分析題中的數(shù)量關(guān)系。學(xué)情分析:由于小學(xué)生目前尚未接觸到比較復(fù)雜的,用算術(shù)方法很難解決的實際問題,所以對方程解法的優(yōu)越認(rèn)識不足。一些學(xué)生覺得用方程解需要寫設(shè)句,比較麻煩,因此喜歡用算術(shù)解法。對此,教師一方面應(yīng)肯定學(xué)生自己想到的正確解法,另一方面又要因勢利導(dǎo),從進(jìn)一步學(xué)習(xí)的需要與方程解法的特點等角度,使學(xué)生初步了解學(xué)習(xí)列方程解決問題的重要性。從而提高學(xué)習(xí)用方程解決問題的自覺性和積極性。

一、說教材:分?jǐn)?shù)大小的比較是小學(xué)數(shù)學(xué)教學(xué)的一個重要內(nèi)容,從知識結(jié)構(gòu)上來講,“分?jǐn)?shù)大小的比較”是在學(xué)生對于分?jǐn)?shù)的意義和讀寫有了初步了解與認(rèn)識之后,對于分?jǐn)?shù)的進(jìn)一步認(rèn)識與建構(gòu)。比較兩個分?jǐn)?shù)的大小,不外乎有三種情況:一是分母相同,分子不同;二是分子相同,分母不同;三是分子、分母都不相同。由于第三種情況進(jìn)行分?jǐn)?shù)大小比較需要掌握分?jǐn)?shù)的基本性質(zhì)和通分。所以,教材沒有安排這部分內(nèi)容,只要求掌握前兩種情況。這節(jié)課主要是在分?jǐn)?shù)的意義的基礎(chǔ)上,學(xué)習(xí)“分母相同,分子大的分?jǐn)?shù)就大。分子相同,分母大的分?jǐn)?shù)反而小。”這兩種比較方法。二、說目標(biāo):根據(jù)本節(jié)課的地位及要求我確定了以下三個方面的教學(xué)目標(biāo):1、知識與技能:能正確比較分母相同或分子相同的兩個分?jǐn)?shù)的大小,并通過觀察比較得出分?jǐn)?shù)的大小,培養(yǎng)觀察能力、抽象概括能力以及語言表述能力。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。