提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大版小學(xué)數(shù)學(xué)六年級下冊《正比例》說課稿

  • 北師大初中七年級數(shù)學(xué)上冊探索與表達(dá)規(guī)律教案1

    北師大初中七年級數(shù)學(xué)上冊探索與表達(dá)規(guī)律教案1

    (1)依照此規(guī)律,第20個圖形共有幾個五角星?(2)擺成第n個圖形需要幾個五角星?(3)擺成第2015個圖形需要幾個五角星?解析:通過觀察已知圖形可得:每個圖形都比其前一個圖形多3個五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個圖中,五角星有3個(3×1);第2個圖中,五角星有6個(3×2);第3個圖中,五角星有9個(3×3);第4個圖中,五角星有12個(3×4);∴第n個圖中有五角星3n個.∴第20個圖中五角星有3×20=60個.(2)擺成第n個圖形需要五角星3n個.(3)擺成第2015個圖形需要6045個五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個圖形需要3n個五角星.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、驗證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過程,從中獲得數(shù)學(xué)知識與技能,體驗教學(xué)活動的方法,同時升華學(xué)生的情感態(tài)度和價值觀.

  • 北師大初中七年級數(shù)學(xué)上冊統(tǒng)計圖的選擇教案1

    北師大初中七年級數(shù)學(xué)上冊統(tǒng)計圖的選擇教案1

    (1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學(xué)生,估計該年級在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學(xué)生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).

  • 北師大初中七年級數(shù)學(xué)上冊線段、射線、直線教案1

    北師大初中七年級數(shù)學(xué)上冊線段、射線、直線教案1

    解析:可以根據(jù)線段的定義寫出所有的線段即可得解;也可以先找出端點的個數(shù),然后利用公式n(n-1)2進(jìn)行計算.方法一:圖中線段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE;共4+3+2+1=10條;方法二:共有A、B、C、D、E五個端點,則線段的條數(shù)為5×(5-1)2=10條.故選C.方法總結(jié):找線段時要按照一定的順序做到不重不漏,若利用公式計算時則更加簡便準(zhǔn)確.【類型四】 線段、射線和直線的應(yīng)用由鄭州到北京的某一次往返列車,運行途中??康能囌疽来问牵亨嵵荨_封——商丘——菏澤——聊城——任丘——北京,那么要為這次列車制作的火車票有()A.6種 B.12種C.21種 D.42種解析:從鄭州出發(fā)要經(jīng)過6個車站,所以要制作6種車票;從開封出發(fā)要經(jīng)過5個車站,所以要制作5種車票;從商丘出發(fā)要經(jīng)過4個車站,所以要制作4種車票;從菏澤出發(fā)要經(jīng)過3個車站,所以要制作3種車票;從聊城出發(fā)要經(jīng)過2個車站,所以要制作2種車票;從任丘出發(fā)要經(jīng)過1個車站,所以要制作1種車票.再考慮是往返列車,起點與終點不同,則車票不同,乘以2即可.即共需制作的車票數(shù)為:2×(6+5+4+3+2+1)=2×21=42種.故選D.

  • 北師大初中七年級數(shù)學(xué)上冊一元一次方程教案1

    北師大初中七年級數(shù)學(xué)上冊一元一次方程教案1

    某文具店一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設(shè)鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣出x支,根據(jù)“鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關(guān)系:x支鉛筆的售價+(60-x)支圓珠筆的售價=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書設(shè)計教學(xué)過程中,通過對多種實際問題情境的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學(xué)生在分析實際問題情境的活動中體會數(shù)學(xué)與現(xiàn)實的密切聯(lián)系.

  • 北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——打折銷售教案1

    北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——打折銷售教案1

    方法總結(jié):讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進(jìn)價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結(jié):典例關(guān)系:售價=進(jìn)價+利潤,售價=原價×打折數(shù)×0.1,售價=進(jìn)價×(1+利潤率).三、板書設(shè)計本節(jié)課從和我們的生活息息相關(guān)的利潤問題入手,讓學(xué)生在具體情境中感受到數(shù)學(xué)在生活實際中的應(yīng)用,從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣.根據(jù)“實際售價=進(jìn)價+利潤”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實際問題.審清題意,找出等量關(guān)系是解決問題的關(guān)鍵.另外,商品經(jīng)濟(jì)問題的題型很多,讓學(xué)生觸類旁通,達(dá)到舉一反三,靈活的運用有關(guān)的公式解決實際問題,提高學(xué)生的數(shù)學(xué)能力.

  • 北師大初中七年級數(shù)學(xué)上冊用計算器進(jìn)行運算教案1

    北師大初中七年級數(shù)學(xué)上冊用計算器進(jìn)行運算教案1

    用四舍五入法將下列各數(shù)按括號中的要求取近似數(shù).(1)0.6328(精確到0.01);(2)7.9122(精確到個位);(3)47155(精確到百位);(4)130.06(精確到0.1);(5)4602.15(精確到千位).解析:(1)把千分位上的數(shù)字2四舍五入即可;(2)把十分位上的數(shù)字9四舍五入即可;(3)先用科學(xué)記數(shù)法表示,然后把十位上的數(shù)字5四舍五入即可;(4)把百分位上的數(shù)字6四舍五入即可;(5)先用科學(xué)記數(shù)法表示,然后把百位上的數(shù)字6四舍五入即可.解:(1)0.6328≈0.63(精確到0.01);(2)7.9122≈8(精確到個位);(3)47155≈4.72×104(精確到百位);(4)130.06≈130.1(精確到0.1);(5)4602.15≈5×103(精確到千位).方法總結(jié):按精確度找出要保留的最后一個數(shù)位,再按下一個數(shù)位上的數(shù)四舍五入即可.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、歸納、積累等思維過程,從中獲得數(shù)學(xué)知識與技能,體驗教學(xué)活動的方法,發(fā)展推理能力,同時升華學(xué)生的情感態(tài)度和價值觀.

  • 北師大初中數(shù)學(xué)八年級上冊二次根式的混合運算2教案

    北師大初中數(shù)學(xué)八年級上冊二次根式的混合運算2教案

    本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進(jìn)行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。

  • 北師大初中數(shù)學(xué)八年級上冊二次根式的運算1教案

    北師大初中數(shù)學(xué)八年級上冊二次根式的運算1教案

    1.會用二次根式的四則運算法則進(jìn)行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

  • 北師大初中數(shù)學(xué)八年級上冊二次根式及其化簡1教案

    北師大初中數(shù)學(xué)八年級上冊二次根式及其化簡1教案

    方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認(rèn)結(jié)果的合理性等等.

  • 北師大初中數(shù)學(xué)八年級上冊二次根式及其化簡2教案

    北師大初中數(shù)學(xué)八年級上冊二次根式及其化簡2教案

    屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進(jìn)行化簡。

  • 北師大初中數(shù)學(xué)八年級上冊勾股定理的應(yīng)用2教案

    北師大初中數(shù)學(xué)八年級上冊勾股定理的應(yīng)用2教案

    內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法.

  • 北師大初中數(shù)學(xué)八年級上冊平面直角坐標(biāo)系2教案

    北師大初中數(shù)學(xué)八年級上冊平面直角坐標(biāo)系2教案

    3.想一想在例1中,(1)點B與點C的縱坐標(biāo)相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標(biāo)軸上點的坐標(biāo)有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點的縱坐標(biāo)為0;縱坐標(biāo)軸上點的坐標(biāo)為0。6.各個象限內(nèi)的點的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

  • 北師大初中數(shù)學(xué)八年級上冊平行線的判定1教案

    北師大初中數(shù)學(xué)八年級上冊平行線的判定1教案

    (2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

  • 北師大初中數(shù)學(xué)八年級上冊認(rèn)識二元一次方程組1教案

    北師大初中數(shù)學(xué)八年級上冊認(rèn)識二元一次方程組1教案

    小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書設(shè)計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會逐步掌握基本的數(shù)學(xué)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對數(shù)學(xué)較全面的體驗和理解.

  • 北師大初中數(shù)學(xué)八年級上冊認(rèn)識二元一次方程組2教案

    北師大初中數(shù)學(xué)八年級上冊認(rèn)識二元一次方程組2教案

    第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .

  • 北師大初中數(shù)學(xué)八年級上冊認(rèn)識勾股定理2教案

    北師大初中數(shù)學(xué)八年級上冊認(rèn)識勾股定理2教案

    意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴(kuò)展學(xué)生的知識面;作業(yè)3是為了拓廣知識,進(jìn)行課后探究而設(shè)計,通過此題可讓學(xué)生進(jìn)一步認(rèn)識勾股定理的前提條件.效果:學(xué)生進(jìn)一步加強對本課知識的理解和掌握.教學(xué)設(shè)計反思(一)設(shè)計理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動學(xué)習(xí).教師只在學(xué)生遇到困難時,進(jìn)行引導(dǎo)或組織學(xué)生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.

  • 北師大初中數(shù)學(xué)八年級上冊三元一次方程組2教案

    北師大初中數(shù)學(xué)八年級上冊三元一次方程組2教案

    目的:課后作業(yè)設(shè)計包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴(kuò)展學(xué)生的知識面;拓廣知識,增加學(xué)生對數(shù)學(xué)問題本質(zhì)的思考而設(shè)計,通過此題可讓學(xué)生進(jìn)一步運用三元一次方程組解決問題.教學(xué)設(shè)計反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進(jìn)一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點引導(dǎo),通過引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時,要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學(xué)的過程中,要讓學(xué)生充分理解對復(fù)雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會深刻.

  • 北師大初中數(shù)學(xué)八年級上冊三角形的外角2教案

    北師大初中數(shù)學(xué)八年級上冊三角形的外角2教案

    證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因為學(xué)生接觸較少,因此更需要加強練習(xí).注意事項:學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。

  • 北師大初中數(shù)學(xué)八年級上冊為什么要證明1教案

    北師大初中數(shù)學(xué)八年級上冊為什么要證明1教案

    解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗數(shù)學(xué)結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗數(shù)學(xué)結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.

  • 北師大初中數(shù)學(xué)八年級上冊驗證勾股定理1教案

    北師大初中數(shù)學(xué)八年級上冊驗證勾股定理1教案

    探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應(yīng)用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實際問題,學(xué)會勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).

上一頁123...323334353637383940414243下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。