
1、教學(xué)主題圖。(1)讓學(xué)生獨立觀察教材情境圖。思考問題:[1]這幅畫面是什么地方?[2]你發(fā)現(xiàn)了畫面中有什么活動內(nèi)容?(按順序)(2)在小組中互相說一說自己觀察到了什么內(nèi)容。你想到了什么?(3)各組代表匯報。(4)教師板書學(xué)生匯報的數(shù)據(jù)。[1]這是某個校園里的活動情景圖。從圖中發(fā)現(xiàn)了教學(xué)大樓前面的兩樹之間都插著4面不同顏色的旗子,升旗臺上也飄著一面國旗。[2]運動場上每4人一組小朋友在跳繩。[3]籃球場上每5人一組準備打籃球比賽。[4]板報下面擺的花是每3盆擺一組,旁邊還有很多盆花。(5)根據(jù)上面的信息(條件),想一想能提出用除法計算的問題嗎?大家在小組議一議。

1、 談話引入新課六一快到了。小朋友們在老師的帶領(lǐng)下忙著布置自己的教室呢!可是他們遇到了一些數(shù)學(xué)上的問題,你能幫他們一快解決嗎?2、教學(xué)例1。(1)、投影出示主題圖引導(dǎo)學(xué)生仔細觀察。說說他們遇到了什么問題?(2)、引導(dǎo)學(xué)生解決問題并列出算式。板書:56÷8(3)、引導(dǎo)學(xué)生得出算式的商。問:你是怎么計算的?(想乘算除)(4)、學(xué)生獨立解決:要是掛7行呢?你能夠解決嗎?學(xué)生說出自己的計算結(jié)果,并把求商的過程跟大家說一說。2、 小結(jié):在今天的學(xué)習(xí)中我們不僅幫小朋友們解決了數(shù)學(xué)問題,而且還進一步學(xué)會了利用乘法口訣來求商。在以后的除法中只要大家能夠熟記口訣,就能很快算出除法的商了。

1、復(fù)習(xí)萬以內(nèi)數(shù)的認識。 請同學(xué)們先來回憶一下,我們學(xué)了萬以內(nèi)數(shù)的哪些知識? 回憶學(xué)了萬以內(nèi)數(shù)的數(shù)數(shù)、讀數(shù)、寫數(shù)、數(shù)的組成、數(shù)位的含義、數(shù)的順序和大小比較、近似數(shù)以及整百、整千數(shù)的加減法……2、下面先請大家獨立做教材第3題,然后集體訂正。 指名讓學(xué)生說一說是怎么做的?3、寫一寫,再讀一讀。① 千位上是2個千、百位上是5個百、個位上是6個一。② 二千五百零六。4、 下面復(fù)習(xí)用計數(shù)單位表示數(shù),獨立完成書上第4題,想一想是怎樣做出來的。5、 復(fù)習(xí)近似數(shù)。請同學(xué)們看教材第5題,找出這段文字中哪些數(shù)是近似數(shù)?并畫出來。再請同學(xué)回答。

一、教材簡析 本單元教學(xué)內(nèi)容主要有:除法的初步認識、用2~6的 乘法口訣求商,解決實際問題。除法的初步認識分兩個層次:第一,以生活中常見的“每份同樣多”的實例合活動情境,讓學(xué)生建立“平均分”概念。第二,在“平均分”概念的基礎(chǔ)上引出除法運算,說明除法算式各部分的名稱。用口訣求商遵循由易到難的原則。解決問題是結(jié)合除法計算出現(xiàn)的。首先在除法的初步認識教學(xué)中 孕伏解決問題的內(nèi)容。然后在用2~6的乘法口訣求商之后編入了解決有關(guān)平均分的實際問題和需要用乘法和除法兩步計算解決簡單實際問題的內(nèi)容。

1、拿出一本數(shù)學(xué)教課書,和一只筆,提問:哪個重有些?2、肯定學(xué)生的回答,并讓學(xué)生“掂一掂”,然后讓學(xué)生說說有什么樣的感覺。3、從剛才的實踐得出結(jié)論:物體有輕有重。板書課題。二、觀察、操作領(lǐng)悟新知1、出示主題掛圖,物體的輕重的計量。觀察主題掛圖。(1、)請同學(xué)們觀察一下,這幅圖畫的是什么?(2、)這幅圖中的小朋友和阿姨在說什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R娢锲返馁|(zhì)量,我們現(xiàn)在來交流以下好嗎?表示物品有多重,可以用克和千克單位來表示。(4、)在學(xué)生說的同時,老師拿出有準備的東西展示。

通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質(zhì)地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.

解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補.平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)

解析:橫軸表示時間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點所對應(yīng)的x值,即15時,A對;溫度最低應(yīng)找到圖象的最低點所對應(yīng)的x值,即3時,B對;這天最高溫度與最低溫度的差應(yīng)讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結(jié):認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應(yīng)值.三、板書設(shè)計1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點,但是它也存在感性觀察不夠準確,畫面局限性大的缺點.教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識點串連起來,完成對該部分內(nèi)容的完整認識和意義建構(gòu).這對學(xué)生在實際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的

解析:根據(jù)“全等三角形的對應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設(shè)計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對應(yīng)角、對應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習(xí)來理解全等三角形的性質(zhì)并滲透符號語言推理.通過實例熟悉運用全等三角形的性質(zhì)解決一些簡單的實際問題

解析:(1)根據(jù)圖象的縱坐標,可得比賽的路程.根據(jù)圖象的橫坐標,可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標看出,這次龍舟賽的全程是1000米;由橫坐標看出,乙隊先到達終點;(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實際意義.三、板書設(shè)計1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實際問題中得到關(guān)系式這一過程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過程中體驗成功的喜悅,樹立學(xué)習(xí)的自信心.體驗生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣

解1:設(shè)該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設(shè)該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.

在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運用的題目中,學(xué)生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導(dǎo)致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學(xué)生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;

【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.

解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對比學(xué)習(xí)加深對新知識的理解.教學(xué)時采用新課探究的形式,鼓勵學(xué)生參與到課堂教學(xué)中,以興趣帶動學(xué)習(xí),提高課堂學(xué)習(xí)效率.

方法總結(jié):作平移圖形時,找關(guān)鍵點的對應(yīng)點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點;②確定圖形中的關(guān)鍵點;③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運用到生活中.

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。